Stock Price Forecasting on Telecommunication Sector Companies in Indonesia Stock Exchange Using Machine Learning Algorithms

Jimmy Moedjahedy, Reymon Rotikan, Wien Fitrian Roshandi, J. Y. Mambu
{"title":"Stock Price Forecasting on Telecommunication Sector Companies in Indonesia Stock Exchange Using Machine Learning Algorithms","authors":"Jimmy Moedjahedy, Reymon Rotikan, Wien Fitrian Roshandi, J. Y. Mambu","doi":"10.1109/ICORIS50180.2020.9320758","DOIUrl":null,"url":null,"abstract":"Stock investment is a demand-driven and demanding monetary practice. Hence, the study of stock forecasts or, more precisely, the forecasting of stock prices, plays an essential role in the stock market. Mistakes in forecasting share prices have a significant impact on global finance; thus, they require an effective method of predicting changes in share prices. Machine learning is one of the methods that can be used to predict the stock price. To predict the stock price of five companies in the telecommunications sector, Bakrie Telecom Tbk (BTEL), PT. XL Axiata Tbk (EXCL), PT. Smartfren Telecom Tbk (FREN), PT. Telekomunikasi Indonesia Tbl (TLKM), and PT. Indosat Tbk (ISAT), two algorithms are used to predict the stock prices, which are the Gaussian Process and SMOreg and train dataset from January 1, 2017, to December 31, 2019. The result of this study is SMOreg has the best result than the Gaussian Process with an RMSE value of 0.00005, MAPE 1.88%, and MBE 0.00025.","PeriodicalId":280589,"journal":{"name":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORIS50180.2020.9320758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Stock investment is a demand-driven and demanding monetary practice. Hence, the study of stock forecasts or, more precisely, the forecasting of stock prices, plays an essential role in the stock market. Mistakes in forecasting share prices have a significant impact on global finance; thus, they require an effective method of predicting changes in share prices. Machine learning is one of the methods that can be used to predict the stock price. To predict the stock price of five companies in the telecommunications sector, Bakrie Telecom Tbk (BTEL), PT. XL Axiata Tbk (EXCL), PT. Smartfren Telecom Tbk (FREN), PT. Telekomunikasi Indonesia Tbl (TLKM), and PT. Indosat Tbk (ISAT), two algorithms are used to predict the stock prices, which are the Gaussian Process and SMOreg and train dataset from January 1, 2017, to December 31, 2019. The result of this study is SMOreg has the best result than the Gaussian Process with an RMSE value of 0.00005, MAPE 1.88%, and MBE 0.00025.
利用机器学习算法预测印尼证券交易所电信行业公司股价
股票投资是一种需求驱动和苛刻的货币行为。因此,股票预测的研究,或者更准确地说,股票价格的预测,在股票市场中起着至关重要的作用。预测股价的失误会对全球金融产生重大影响;因此,他们需要一种有效的方法来预测股价的变化。机器学习是可以用来预测股票价格的方法之一。为了预测Bakrie Telecom Tbk (BTEL)、PT. XL Axiata Tbk (EXCL)、PT. Smartfren Telecom Tbk (FREN)、PT. Telekomunikasi Indonesia Tbl (TLKM)和PT. Indosat Tbk (ISAT)这五家电信行业公司的股价,我们使用了两种算法来预测股价,即2017年1月1日至2019年12月31日的高斯过程和SMOreg和训练数据集。本研究结果表明,SMOreg比高斯过程效果最好,RMSE值为0.00005,MAPE为1.88%,MBE为0.00025。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信