Using histograms to detect and track objects in color video

Michael Mason, Zoran Duric
{"title":"Using histograms to detect and track objects in color video","authors":"Michael Mason, Zoran Duric","doi":"10.1109/AIPR.2001.991219","DOIUrl":null,"url":null,"abstract":"Two methods of detecting and tracking objects in color video are presented. Color and edge histograms are explored as ways to model the background and foreground of a scene. The two types of methods are evaluated to determine their speed, accuracy and robustness. Histogram comparison techniques are used to compute similarity values that aid in identifying regions of interest. Foreground objects are detected and tracked by dividing each video frame into smaller regions (cells) and comparing the histogram of each cell to the background model. Results are presented for video sequences of human activity.","PeriodicalId":277181,"journal":{"name":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2001.991219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

Two methods of detecting and tracking objects in color video are presented. Color and edge histograms are explored as ways to model the background and foreground of a scene. The two types of methods are evaluated to determine their speed, accuracy and robustness. Histogram comparison techniques are used to compute similarity values that aid in identifying regions of interest. Foreground objects are detected and tracked by dividing each video frame into smaller regions (cells) and comparing the histogram of each cell to the background model. Results are presented for video sequences of human activity.
利用直方图检测和跟踪彩色视频中的对象
提出了彩色视频中目标检测和跟踪的两种方法。颜色直方图和边缘直方图被探索作为建模场景的背景和前景的方法。对这两种方法进行了评估,以确定它们的速度、准确性和鲁棒性。直方图比较技术用于计算相似性值,帮助识别感兴趣的区域。通过将每个视频帧划分为更小的区域(细胞)并将每个细胞的直方图与背景模型进行比较,来检测和跟踪前景对象。结果提出了视频序列的人类活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信