Robust Data Modelling Using Thin Plate Splines

Ruwan Tennakoon, A. Bab-Hadiashar, D. Suter, Z. Cao
{"title":"Robust Data Modelling Using Thin Plate Splines","authors":"Ruwan Tennakoon, A. Bab-Hadiashar, D. Suter, Z. Cao","doi":"10.1109/DICTA.2013.6691522","DOIUrl":null,"url":null,"abstract":"Using splines to model spatio-temporal data is one of the most common methods of data fitting used in a variety of computer vision applications. Despite its ubiquitous applications, particularly for volumetric image registration and interpolation, the existing estimation methods are still sensitive to the existence of noise and outliers. A method of robust data modelling using thin plate splines, based upon the well-known least K-th order statistical model fitting, is proposed and compared with the best available robust spline fitting techniques. Our experiments show that existing methods are not suitable for typical computer vision applications where outliers are structured (pseudo-outliers) while the proposed method performs well even when there are numerous pseudo-outliers.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Using splines to model spatio-temporal data is one of the most common methods of data fitting used in a variety of computer vision applications. Despite its ubiquitous applications, particularly for volumetric image registration and interpolation, the existing estimation methods are still sensitive to the existence of noise and outliers. A method of robust data modelling using thin plate splines, based upon the well-known least K-th order statistical model fitting, is proposed and compared with the best available robust spline fitting techniques. Our experiments show that existing methods are not suitable for typical computer vision applications where outliers are structured (pseudo-outliers) while the proposed method performs well even when there are numerous pseudo-outliers.
利用薄板样条进行稳健数据建模
利用样条曲线对时空数据进行建模是各种计算机视觉应用中最常用的数据拟合方法之一。尽管它的应用非常广泛,特别是在体积图像配准和插值中,但现有的估计方法仍然对噪声和离群值的存在很敏感。提出了一种基于最小k阶统计模型拟合的薄板样条稳健数据建模方法,并与现有的最佳稳健样条拟合技术进行了比较。我们的实验表明,现有的方法不适合典型的计算机视觉应用,其中异常值是结构化的(伪异常值),而所提出的方法即使在有许多伪异常值的情况下也表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信