Determining the Storage Capacity of a Saltwater Disposal Reservoir in Practice

Xingru Wu, D. Childers, Lei Dai, K. Shaffer
{"title":"Determining the Storage Capacity of a Saltwater Disposal Reservoir in Practice","authors":"Xingru Wu, D. Childers, Lei Dai, K. Shaffer","doi":"10.2118/213029-ms","DOIUrl":null,"url":null,"abstract":"\n Produced water is commonly co-produced with oil and gas production and requires safe disposal in subsurface reservoirs. Knowing the amount of produced water that can be safely injected into the reservoir is important for disposal operations. While the methods of reservoir hydrocarbon storage are abundant in literature, the granularity of handling water injection capacity is rare, probably due to the misconception that production is similar to injection into a formation. The knowledge of hydrocarbon reservoir petrophysics shines some light on the problem. However, it is far from sufficient to make an economically viable decision as injecting water into the reservoir dramatically differs from producing it.\n Many practitioners take for granted that knowing the pore volume of the target formation would be sufficient to determine the storage volume. The actual water injection capacity is the product of the pore volume of the formation, total compressibility of the system, and maximum allowable pressure difference. Since the stress-strain relationship of a porous medium depends on the frequency and magnitude of the loading and unloading process, the total compressibility would be different. The maximum allowable injection pressure and reservoir pressure are functions of in-situ stresses, injection temperature and pressure, and reservoir geomechanical parameters, all of which have significant uncertainty. In practical design, we must consider all parameters and their respective uncertainties. This paper presents a procedure for determining the injection capacity through an in-depth discussion of involved parameters and their associated uncertainties from estimation and measurements. This paper will also demonstrate our practice using a field example as our case study to show our suggested approach.","PeriodicalId":158776,"journal":{"name":"Day 3 Wed, May 24, 2023","volume":"116 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 24, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/213029-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Produced water is commonly co-produced with oil and gas production and requires safe disposal in subsurface reservoirs. Knowing the amount of produced water that can be safely injected into the reservoir is important for disposal operations. While the methods of reservoir hydrocarbon storage are abundant in literature, the granularity of handling water injection capacity is rare, probably due to the misconception that production is similar to injection into a formation. The knowledge of hydrocarbon reservoir petrophysics shines some light on the problem. However, it is far from sufficient to make an economically viable decision as injecting water into the reservoir dramatically differs from producing it. Many practitioners take for granted that knowing the pore volume of the target formation would be sufficient to determine the storage volume. The actual water injection capacity is the product of the pore volume of the formation, total compressibility of the system, and maximum allowable pressure difference. Since the stress-strain relationship of a porous medium depends on the frequency and magnitude of the loading and unloading process, the total compressibility would be different. The maximum allowable injection pressure and reservoir pressure are functions of in-situ stresses, injection temperature and pressure, and reservoir geomechanical parameters, all of which have significant uncertainty. In practical design, we must consider all parameters and their respective uncertainties. This paper presents a procedure for determining the injection capacity through an in-depth discussion of involved parameters and their associated uncertainties from estimation and measurements. This paper will also demonstrate our practice using a field example as our case study to show our suggested approach.
咸水处理水库实际储水量的确定
采出水通常与油气生产共同开采,需要在地下储层中进行安全处理。了解可以安全注入储层的采出水量对于处理作业非常重要。虽然文献中储层储烃方法丰富,但处理注水能力的粒度却很少,这可能是由于误解了生产与注入地层相似。油气储层岩石物理学的知识为解决这一问题提供了一些线索。然而,这远远不足以做出经济上可行的决定,因为向储层注水与采油有很大的不同。许多从业者想当然地认为,知道目标地层的孔隙体积就足以确定存储体积。实际注水能力是地层孔隙体积、体系总压缩性和最大允许压差的乘积。由于多孔介质的应力应变关系取决于加载和卸载过程的频率和大小,因此总压缩率会有所不同。最大允许注入压力和储层压力是地应力、注入温度和压力以及储层地质力学参数的函数,具有较大的不确定性。在实际设计中,我们必须考虑所有参数及其各自的不确定性。本文通过深入讨论所涉及的参数及其与估计和测量相关的不确定性,提出了一种确定注入能力的方法。本文还将使用一个现场示例作为案例研究来演示我们的实践,以展示我们建议的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信