Facial expressions classification with hierarchical radial basis function networks

Daw-Tung Lin, Jing Chen
{"title":"Facial expressions classification with hierarchical radial basis function networks","authors":"Daw-Tung Lin, Jing Chen","doi":"10.1109/ICONIP.1999.844710","DOIUrl":null,"url":null,"abstract":"Proposes a hierarchical model of a radial basis function network to classify and to recognize facial expressions. This approach utilizes principal component analysis as the feature extraction process from static images. It decomposes the acquired data into a small set of characteristic features. Using hierarchical networks of Gaussian radial basis functions, we differentiate the images in the feature space and fulfil the classification task. The objective of this research is to develop a more efficient system to discriminate between seven facial expressions (happiness, sadness, surprise, fear, anger, disgust and neutral). A constructive procedure is detailed and the system performance is evaluated. We achieved a correct classification rate above 98.4%, which is overwhelming distinguished compared to other approaches.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"78 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Proposes a hierarchical model of a radial basis function network to classify and to recognize facial expressions. This approach utilizes principal component analysis as the feature extraction process from static images. It decomposes the acquired data into a small set of characteristic features. Using hierarchical networks of Gaussian radial basis functions, we differentiate the images in the feature space and fulfil the classification task. The objective of this research is to develop a more efficient system to discriminate between seven facial expressions (happiness, sadness, surprise, fear, anger, disgust and neutral). A constructive procedure is detailed and the system performance is evaluated. We achieved a correct classification rate above 98.4%, which is overwhelming distinguished compared to other approaches.
基于层次径向基函数网络的面部表情分类
提出了一种基于径向基函数网络的面部表情分类识别层次模型。该方法利用主成分分析作为静态图像的特征提取过程。它将采集到的数据分解成一个小的特征集。利用高斯径向基函数的分层网络,对特征空间中的图像进行区分,完成分类任务。这项研究的目的是开发一个更有效的系统来区分七种面部表情(快乐、悲伤、惊讶、恐惧、愤怒、厌恶和中性)。详细介绍了构建过程,并对系统性能进行了评价。我们实现了98.4%以上的正确分类率,与其他方法相比,这是压倒性的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信