A comparative study of motor imagery based BCI classifiers on EEG and iEEG data

Naresh Nagabushan, Taber Fisher, G. Malaty, M. Witcher, S. Vijayan
{"title":"A comparative study of motor imagery based BCI classifiers on EEG and iEEG data","authors":"Naresh Nagabushan, Taber Fisher, G. Malaty, M. Witcher, S. Vijayan","doi":"10.1109/GlobalSIP45357.2019.8969540","DOIUrl":null,"url":null,"abstract":"There are many state-of-the-art Brain Computer Interface (BCI) classification algorithms designed to perform well when applied to signals acquired using electroencephalography (EEG). EEG has the advantage of being non-invasive in nature, easy to use, and effective in capturing signals in the mu (7-13 Hz) and beta (13-30 Hz) bands during motor imagery tasks. However, EEG recordings are more susceptible to movement artifacts and capture a lower frequency of neural activity when compared with invasive techniques such as electrocorticography (ECoG) or intracranial EEG (iEEG). In this paper, we analyze the performance of four different EEG motor imagery classification algorithms (both classical machine learning methods and deep learning-based methods) on a two-hand motor imagery task using both EEG and iEEG data sets. Using various feature visualization techniques, we provide insight into why deep learning-based classifiers designed to learn features end-to-end may perform better than the classical machine learning-based models. We also showed on average iEEG-based motor imagery BCIs, using our iEEG data set, do not perform as well as EEG-based BCIs. This work provides a starting point for the implementation of BCI applications using iEEG data.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are many state-of-the-art Brain Computer Interface (BCI) classification algorithms designed to perform well when applied to signals acquired using electroencephalography (EEG). EEG has the advantage of being non-invasive in nature, easy to use, and effective in capturing signals in the mu (7-13 Hz) and beta (13-30 Hz) bands during motor imagery tasks. However, EEG recordings are more susceptible to movement artifacts and capture a lower frequency of neural activity when compared with invasive techniques such as electrocorticography (ECoG) or intracranial EEG (iEEG). In this paper, we analyze the performance of four different EEG motor imagery classification algorithms (both classical machine learning methods and deep learning-based methods) on a two-hand motor imagery task using both EEG and iEEG data sets. Using various feature visualization techniques, we provide insight into why deep learning-based classifiers designed to learn features end-to-end may perform better than the classical machine learning-based models. We also showed on average iEEG-based motor imagery BCIs, using our iEEG data set, do not perform as well as EEG-based BCIs. This work provides a starting point for the implementation of BCI applications using iEEG data.
基于脑电和脑电数据的运动意象脑机接口分类器的比较研究
有许多最先进的脑机接口(BCI)分类算法被设计为在应用于脑电图(EEG)获得的信号时表现良好。EEG具有非侵入性、易于使用、有效捕获运动想象任务中mu (7-13 Hz)和beta (13-30 Hz)频段信号的优点。然而,与皮质电图(ECoG)或颅内脑电图(iEEG)等侵入性技术相比,脑电图记录更容易受到运动伪影的影响,并且捕获的神经活动频率更低。在本文中,我们使用EEG和iEEG数据集分析了四种不同的EEG运动图像分类算法(包括经典机器学习方法和基于深度学习的方法)在双手运动图像任务上的性能。使用各种特征可视化技术,我们深入了解了为什么基于深度学习的分类器设计用于端到端学习特征可能比经典的基于机器学习的模型表现更好。我们还发现,使用我们的脑电图数据集,基于脑电图的运动图像脑机接口的平均表现不如基于脑电图的脑机接口。这项工作为使用iEEG数据实现BCI应用程序提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信