{"title":"Temporal Robustness of Stochastic Signals","authors":"Lars Lindemann, Alena Rodionova, George J. Pappas","doi":"10.1145/3501710.3519504","DOIUrl":null,"url":null,"abstract":"We study the temporal robustness of stochastic signals. This topic is of particular interest in interleaving processes such as multi-agent systems where communication and individual agents induce timing uncertainty. For a deterministic signal and a given specification, we first introduce the synchronous and the asynchronous temporal robustness to quantify the signal’s robustness with respect to synchronous and asynchronous time shifts in its sub-signals. We then define the temporal robustness risk by investigating the temporal robustness of the realizations of a stochastic signal. This definition can be interpreted as the risk associated with a stochastic signal to not satisfy a specification robustly in time. In this definition, general forms of specifications such as signal temporal logic specifications are permitted. We show how the temporal robustness risk is estimated from data for the value-at-risk. The usefulness of the temporal robustness risk is underlined by both theoretical and empirical evidence. In particular, we provide various numerical case studies including a T-intersection scenario in autonomous driving.","PeriodicalId":194680,"journal":{"name":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501710.3519504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We study the temporal robustness of stochastic signals. This topic is of particular interest in interleaving processes such as multi-agent systems where communication and individual agents induce timing uncertainty. For a deterministic signal and a given specification, we first introduce the synchronous and the asynchronous temporal robustness to quantify the signal’s robustness with respect to synchronous and asynchronous time shifts in its sub-signals. We then define the temporal robustness risk by investigating the temporal robustness of the realizations of a stochastic signal. This definition can be interpreted as the risk associated with a stochastic signal to not satisfy a specification robustly in time. In this definition, general forms of specifications such as signal temporal logic specifications are permitted. We show how the temporal robustness risk is estimated from data for the value-at-risk. The usefulness of the temporal robustness risk is underlined by both theoretical and empirical evidence. In particular, we provide various numerical case studies including a T-intersection scenario in autonomous driving.