Personalized Multiple Facial Action Unit Recognition through Generative Adversarial Recognition Network

Can Wang, Shangfei Wang
{"title":"Personalized Multiple Facial Action Unit Recognition through Generative Adversarial Recognition Network","authors":"Can Wang, Shangfei Wang","doi":"10.1145/3240508.3240613","DOIUrl":null,"url":null,"abstract":"Personalized facial action unit (AU) recognition is challenging due to subject-dependent facial behavior. This paper proposes a method to recognize personalized multiple facial AUs through a novel generative adversarial network, which adapts the distribution of source domain facial images to that of target domain facial images and detects multiple AUs by leveraging AU dependencies. Specifically, we use a generative adversarial network to generate synthetic images from source domain; the synthetic images have a similar appearance to the target subject and retain the AU patterns of the source images. We simultaneously leverage AU dependencies to train a multiple AU classifier. Experimental results on three benchmark databases demonstrate that the proposed method can successfully realize unsupervised domain adaptation for individual AU detection, and thus outperforms state-of-the-art AU detection methods.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Personalized facial action unit (AU) recognition is challenging due to subject-dependent facial behavior. This paper proposes a method to recognize personalized multiple facial AUs through a novel generative adversarial network, which adapts the distribution of source domain facial images to that of target domain facial images and detects multiple AUs by leveraging AU dependencies. Specifically, we use a generative adversarial network to generate synthetic images from source domain; the synthetic images have a similar appearance to the target subject and retain the AU patterns of the source images. We simultaneously leverage AU dependencies to train a multiple AU classifier. Experimental results on three benchmark databases demonstrate that the proposed method can successfully realize unsupervised domain adaptation for individual AU detection, and thus outperforms state-of-the-art AU detection methods.
基于生成对抗识别网络的个性化多面部动作单元识别
由于个体面部行为的依赖性,个性化面部动作单元(AU)识别具有挑战性。本文提出了一种基于生成对抗网络的个性化多人脸识别方法,该方法将源域人脸图像的分布与目标域人脸图像的分布相适应,利用人脸图像的依赖关系检测多个人脸图像。具体来说,我们使用生成式对抗网络从源域生成合成图像;合成图像具有与目标主体相似的外观并保留源图像的AU模式。我们同时利用AU依赖来训练多个AU分类器。在三个基准数据库上的实验结果表明,该方法可以成功地实现对单个非监督域的自适应,从而优于现有的非监督域检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信