DOA estimation for large array with nonuniform spacing based on sparse representation

Bin Zhou, Qing Wang, H. Quan
{"title":"DOA estimation for large array with nonuniform spacing based on sparse representation","authors":"Bin Zhou, Qing Wang, H. Quan","doi":"10.1109/WCSP.2018.8555584","DOIUrl":null,"url":null,"abstract":"The problem of grating lobes false alarm is easy to occur in Direction of Arrival (DoA) estimation of large array with nonuniform spacing. The sparse spatial signal reconstruction can be used to suppress the grating lobes. This paper applied the Sparse Bayesian Learning (SBL) algorithm in DOA estimation for large spacing array. To solve the steering vector mismatch problem, the concept of peak confidence is proposed. Utilizing the confidence function to screen the peaks, the false alarms of grating lobes are avoided effectively. The effect of different input k value on the grating lobes suppression performance is analyzed, and the threshold selection in practical application is given. Simulation and sea trial data results confirm the grating lobes suppression performance of the proposed algorithm.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of grating lobes false alarm is easy to occur in Direction of Arrival (DoA) estimation of large array with nonuniform spacing. The sparse spatial signal reconstruction can be used to suppress the grating lobes. This paper applied the Sparse Bayesian Learning (SBL) algorithm in DOA estimation for large spacing array. To solve the steering vector mismatch problem, the concept of peak confidence is proposed. Utilizing the confidence function to screen the peaks, the false alarms of grating lobes are avoided effectively. The effect of different input k value on the grating lobes suppression performance is analyzed, and the threshold selection in practical application is given. Simulation and sea trial data results confirm the grating lobes suppression performance of the proposed algorithm.
基于稀疏表示的非均匀间距大阵列DOA估计
在非均匀间距大型阵列的DoA估计中,容易出现光栅瓣虚警问题。稀疏空间信号重构可以用来抑制光栅瓣。为了解决导向矢量失配问题,提出了峰值置信度的概念。利用置信度函数对峰值进行筛选,有效地避免了光栅瓣的虚警。分析了不同输入k值对光栅瓣抑制性能的影响,给出了实际应用中阈值的选择。仿真和海试数据验证了该算法对光栅瓣的抑制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信