Dynamical generation of parameter laminations

A. Blokh, L. Oversteegen, V. Timorin
{"title":"Dynamical generation of parameter\n laminations","authors":"A. Blokh, L. Oversteegen, V. Timorin","doi":"10.1090/conm/744/14986","DOIUrl":null,"url":null,"abstract":"Local similarity between the Mandelbrot set and quadratic Julia sets manifests itself in a variety of ways. We discuss a combinatorial one, in the language of geodesic laminations. More precisely, we compare quadratic invariant laminations representing Julia sets with the so-called Quadratic Minor Lamination (QML) representing a locally connected model of the Mandelbrot set. Similarly to the construction of an invariant lamination by pullbacks of certain leaves, we describe how QML can be generated by properly understood pullbacks of certain minors. In particular, we show that the minors of all non-renormalizable quadratic laminations can be obtained by taking limits of \"pullbacks\" of minors from the main cardioid. This is the second, amended version of the paper, to appear in Contemporary Mathematics","PeriodicalId":412693,"journal":{"name":"Dynamics: Topology and Numbers","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics: Topology and Numbers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/744/14986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local similarity between the Mandelbrot set and quadratic Julia sets manifests itself in a variety of ways. We discuss a combinatorial one, in the language of geodesic laminations. More precisely, we compare quadratic invariant laminations representing Julia sets with the so-called Quadratic Minor Lamination (QML) representing a locally connected model of the Mandelbrot set. Similarly to the construction of an invariant lamination by pullbacks of certain leaves, we describe how QML can be generated by properly understood pullbacks of certain minors. In particular, we show that the minors of all non-renormalizable quadratic laminations can be obtained by taking limits of "pullbacks" of minors from the main cardioid. This is the second, amended version of the paper, to appear in Contemporary Mathematics
参数分层的动态生成
Mandelbrot集合和二次Julia集合之间的局部相似性以多种方式表现出来。我们讨论一个组合的,在测地线层积的语言。更准确地说,我们比较了表示Julia集的二次不变分层和表示Mandelbrot集的局部连接模型的所谓二次次分层(QML)。与通过某些叶的回调构造不变层类似,我们描述了如何通过正确理解某些子级的回调生成QML。特别地,我们证明了所有不可重整的二次层合的次元可以通过取次元从主心线的“回调”的极限来得到。这是发表在《当代数学》杂志上的论文的第二个修订版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信