Application of Holographic Neural Network for Stock Price Prediction

Vaishnavi R. Kunkoliker
{"title":"Application of Holographic Neural Network for Stock Price Prediction","authors":"Vaishnavi R. Kunkoliker","doi":"10.1109/ICMLC.2010.42","DOIUrl":null,"url":null,"abstract":"Neural Networks are models of biological neural structure, so the scientist, engineers & mathematicians etc. try to make an intellectual abstraction with the help of neural network which would enable a computer work in a similar fashion in which the human brain works. Here we use a specific type of neural network called “Holographic Neural Network” (HNN), for stock price prediction. HNN takes in the input through Stimulus Vector and gives output through Response Vector. Each element in HNN is associated with a confidence & magnitude value, for this the input given should be in polar form of complex numbers. The results predicted by HNN are compared to results predicted by Regression method.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural Networks are models of biological neural structure, so the scientist, engineers & mathematicians etc. try to make an intellectual abstraction with the help of neural network which would enable a computer work in a similar fashion in which the human brain works. Here we use a specific type of neural network called “Holographic Neural Network” (HNN), for stock price prediction. HNN takes in the input through Stimulus Vector and gives output through Response Vector. Each element in HNN is associated with a confidence & magnitude value, for this the input given should be in polar form of complex numbers. The results predicted by HNN are compared to results predicted by Regression method.
全息神经网络在股票价格预测中的应用
神经网络是生物神经结构的模型,所以科学家、工程师和数学家等都试图在神经网络的帮助下进行智力抽象,这将使计算机能够以类似于人脑工作的方式工作。在这里,我们使用一种特定类型的神经网络,称为“全息神经网络”(HNN),用于股票价格预测。HNN通过刺激向量接受输入,通过响应向量给出输出。HNN中的每个元素都与置信度和幅度值相关联,因此给定的输入应该是复数的极坐标形式。将HNN预测结果与回归方法预测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信