A wavelet-based technique for image similarity estimation

E. Regentova, S. Latifi, Shulan Deng
{"title":"A wavelet-based technique for image similarity estimation","authors":"E. Regentova, S. Latifi, Shulan Deng","doi":"10.1109/ITCC.2000.844212","DOIUrl":null,"url":null,"abstract":"In this paper we proposed a method to evaluate the similarity of images compressed by a given digital wavelet transform, which allows for comparing lossless or lossy-compressed images. Two features that describe the image structural content, edge point locations and edge density, are computed directly from multiscale data. Depending on the image type and the feature selections for processing, the distance between two images is computed in one- or two-dimensional space. This method facilitates content-based image querying and automatic database retrieval. In addition, images can be sorted and appropriately indexed with respect to such global characteristics as smoothness, texture direction and repetition period.","PeriodicalId":146581,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2000.844212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we proposed a method to evaluate the similarity of images compressed by a given digital wavelet transform, which allows for comparing lossless or lossy-compressed images. Two features that describe the image structural content, edge point locations and edge density, are computed directly from multiscale data. Depending on the image type and the feature selections for processing, the distance between two images is computed in one- or two-dimensional space. This method facilitates content-based image querying and automatic database retrieval. In addition, images can be sorted and appropriately indexed with respect to such global characteristics as smoothness, texture direction and repetition period.
基于小波的图像相似度估计技术
在本文中,我们提出了一种方法来评估由给定的数字小波变换压缩图像的相似性,它允许比较无损或有损压缩图像。描述图像结构内容的两个特征,边缘点位置和边缘密度,是直接从多尺度数据中计算出来的。根据图像类型和处理的特征选择,在一维或二维空间中计算两幅图像之间的距离。该方法便于基于内容的图像查询和数据库自动检索。此外,还可以根据图像的平滑度、纹理方向、重复周期等全局特征对图像进行排序和适当的索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信