{"title":"Double Hot-Spot Dual-Polarization Chand-Bali Nanoantenna for NIR Detection Applications","authors":"A. Elsharabasy, M. Bakr, M. Deen","doi":"10.1109/PN.2018.8438823","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel design of a gold nanoantenna array. The nanoantenna consists of two elliptical patches. A vertical oval coincides with the minor axis of the horizontal oval. An elliptical aperture etched out from the horizontal one resulting in our Chand-Bali shaped nanoantenna. The geometrical dimensions are properly selected such that two symmetrical small gaps are created. The electric field intensity has a significant enhancement in these two gaps at the same resonance frequency within the near-infrared (NIR) regime for both orthogonal polarizations. The new design offers an improved performance for IR detection and harvesting applications.","PeriodicalId":423625,"journal":{"name":"2018 Photonics North (PN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN.2018.8438823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we introduce a novel design of a gold nanoantenna array. The nanoantenna consists of two elliptical patches. A vertical oval coincides with the minor axis of the horizontal oval. An elliptical aperture etched out from the horizontal one resulting in our Chand-Bali shaped nanoantenna. The geometrical dimensions are properly selected such that two symmetrical small gaps are created. The electric field intensity has a significant enhancement in these two gaps at the same resonance frequency within the near-infrared (NIR) regime for both orthogonal polarizations. The new design offers an improved performance for IR detection and harvesting applications.