LOCI: Load Shedding through Class-Preserving Data Acquisition

Peng Wang, Haixun Wang, Wei Wang, Baile Shi, Philip S. Yu
{"title":"LOCI: Load Shedding through Class-Preserving Data Acquisition","authors":"Peng Wang, Haixun Wang, Wei Wang, Baile Shi, Philip S. Yu","doi":"10.1109/ICDM.2006.100","DOIUrl":null,"url":null,"abstract":"An avalanche of data available in the stream form is overstretching our data analyzing ability. In this paper, we propose a novel load shedding method that enables fast and accurate stream data classification. We transform input data so that its class information concentrates on a few features, and we introduce a progressive classifier that makes prediction with partial input. We take advantage of stream data's temporal locality -for example, readings from a temperature sensor usually do not change dramatically over a short period of time -for load shedding. We first show that temporal locality of the original data is preserved by our transform, then we utilize positive and negative knowledge about the data (which is of much smaller size than the data itself) for classification. We employ both analytical and empirical analysis to demonstrate the advantage of our approach.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An avalanche of data available in the stream form is overstretching our data analyzing ability. In this paper, we propose a novel load shedding method that enables fast and accurate stream data classification. We transform input data so that its class information concentrates on a few features, and we introduce a progressive classifier that makes prediction with partial input. We take advantage of stream data's temporal locality -for example, readings from a temperature sensor usually do not change dramatically over a short period of time -for load shedding. We first show that temporal locality of the original data is preserved by our transform, then we utilize positive and negative knowledge about the data (which is of much smaller size than the data itself) for classification. We employ both analytical and empirical analysis to demonstrate the advantage of our approach.
LOCI:通过保持类的数据采集来减少负载
以流形式提供的大量数据超出了我们的数据分析能力。在本文中,我们提出了一种新的减载方法,可以实现快速准确的流数据分类。我们对输入数据进行了转换,使其类信息集中在几个特征上,并引入了一个渐进式分类器,该分类器使用部分输入进行预测。我们利用流数据的时间局域性(例如,温度传感器的读数通常在短时间内不会发生显着变化)来减少负载。我们首先表明,我们的变换保留了原始数据的时间局部性,然后我们利用关于数据的正知识和负知识(比数据本身小得多)进行分类。我们采用分析和实证分析来证明我们的方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信