Data-Driven Representation Model of Urban Movement Space

Harbil Arregui, O. Otaegui, O. Arbelaitz
{"title":"Data-Driven Representation Model of Urban Movement Space","authors":"Harbil Arregui, O. Otaegui, O. Arbelaitz","doi":"10.1145/3397056.3397061","DOIUrl":null,"url":null,"abstract":"Tracking urban mobility with current heterogeneous sensing capabilities has opened a wide research area on analytical and predictive data-driven models for improvements in transport operations and planning. These improvements are applicable for individual users, service providers and decision-makers. People, vehicles and goods move along the city according to the physical resources (roads, bike-lanes, side-walks...) and non-physical resources (such as scheduled public transportation services). We present this set of resources as the Urban Movement Space (UMS). We collect the main challenges and research foundations that geoinformatic approaches need to cope when tackling transportation resources and mobility data. The work presented in this paper proposes a conceptual modelling framework to represent the urban movement space, in order to match observed tracking data accordingly, and allow further analytical queries. Our approach combines an open free-space and network-based space to model the time-varying urban movement space, considering seasonality and uncertainty of multimodal travel options.","PeriodicalId":365314,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Geoinformatics and Data Analysis","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Geoinformatics and Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397056.3397061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking urban mobility with current heterogeneous sensing capabilities has opened a wide research area on analytical and predictive data-driven models for improvements in transport operations and planning. These improvements are applicable for individual users, service providers and decision-makers. People, vehicles and goods move along the city according to the physical resources (roads, bike-lanes, side-walks...) and non-physical resources (such as scheduled public transportation services). We present this set of resources as the Urban Movement Space (UMS). We collect the main challenges and research foundations that geoinformatic approaches need to cope when tackling transportation resources and mobility data. The work presented in this paper proposes a conceptual modelling framework to represent the urban movement space, in order to match observed tracking data accordingly, and allow further analytical queries. Our approach combines an open free-space and network-based space to model the time-varying urban movement space, considering seasonality and uncertainty of multimodal travel options.
城市运动空间的数据驱动表示模型
利用目前的异构传感能力跟踪城市交通,为改进运输业务和规划开辟了一个广泛的分析和预测数据驱动模型研究领域。这些改进适用于个人用户、服务提供商和决策者。人、车辆和货物根据物质资源(道路、自行车道、人行道……)和非物质资源(如预定的公共交通服务)在城市中移动。我们将这组资源称为城市运动空间(UMS)。我们收集了地理信息学方法在处理交通资源和移动数据时需要应对的主要挑战和研究基础。本文提出了一个概念建模框架来表示城市运动空间,以便相应地匹配观察到的跟踪数据,并允许进一步的分析查询。我们的方法结合了开放的自由空间和基于网络的空间来模拟随时间变化的城市运动空间,同时考虑了季节性和多式联运出行选择的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信