Zero-Shot Cross-Lingual Sequence Tagging as Seq2Seq Generation for Joint Intent Classification and Slot Filling

Fei Wang, Kuan-Hao Huang, Anoop Kumar, A. Galstyan, Greg Ver Steeg, Kai-Wei Chang
{"title":"Zero-Shot Cross-Lingual Sequence Tagging as Seq2Seq Generation for Joint Intent Classification and Slot Filling","authors":"Fei Wang, Kuan-Hao Huang, Anoop Kumar, A. Galstyan, Greg Ver Steeg, Kai-Wei Chang","doi":"10.18653/v1/2022.mmnlu-1.6","DOIUrl":null,"url":null,"abstract":"The joint intent classification and slot filling task seeks to detect the intent of an utterance and extract its semantic concepts. In the zero-shot cross-lingual setting, a model is trained on a source language and then transferred to other target languages through multi-lingual representations without additional training data. While prior studies show that pre-trained multilingual sequence-to-sequence (Seq2Seq) models can facilitate zero-shot transfer, there is little understanding on how to design the output template for the joint prediction tasks. In this paper, we examine three aspects of the output template – (1) label mapping, (2) task dependency, and (3) word order. Experiments on the MASSIVE dataset consisting of 51 languages show that our output template significantly improves the performance of pre-trained cross-lingual language models.","PeriodicalId":375461,"journal":{"name":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.mmnlu-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The joint intent classification and slot filling task seeks to detect the intent of an utterance and extract its semantic concepts. In the zero-shot cross-lingual setting, a model is trained on a source language and then transferred to other target languages through multi-lingual representations without additional training data. While prior studies show that pre-trained multilingual sequence-to-sequence (Seq2Seq) models can facilitate zero-shot transfer, there is little understanding on how to design the output template for the joint prediction tasks. In this paper, we examine three aspects of the output template – (1) label mapping, (2) task dependency, and (3) word order. Experiments on the MASSIVE dataset consisting of 51 languages show that our output template significantly improves the performance of pre-trained cross-lingual language models.
基于Seq2Seq生成的零射跨语言序列标注联合意图分类和槽填充
联合意图分类和槽填充任务旨在检测话语的意图并提取其语义概念。在零射击跨语言设置中,模型在源语言上进行训练,然后通过多语言表示转移到其他目标语言,而不需要额外的训练数据。虽然先前的研究表明,预先训练的多语言序列到序列(Seq2Seq)模型可以促进零次迁移,但对于如何设计联合预测任务的输出模板却知之甚少。在本文中,我们研究了输出模板的三个方面-(1)标签映射,(2)任务依赖和(3)词序。在包含51种语言的MASSIVE数据集上的实验表明,我们的输出模板显著提高了预训练的跨语言语言模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信