Efficient health data compression on mobile devices

A. Pande, E. Baik, P. Mohapatra
{"title":"Efficient health data compression on mobile devices","authors":"A. Pande, E. Baik, P. Mohapatra","doi":"10.1145/2491148.2493888","DOIUrl":null,"url":null,"abstract":"There is an increase rise in the usage of mobile health sensors in wearable devices and smartphones. These embedded systems have tight limits on storage, computation power, network connectivity and battery usage making it important to ensure efficient storage/ communication of sensor readings to centralized node/ server. Frequency Transform or Entropy encoding schemes such as arithmetic or Huffman coding can be used for compression, but they incur high computational cost in some scenarios or are oblivious to the higher level redundancies in signal. To this end, we used the property of periodicity in these naturally occurring signals such as heart rate or gait measurements to design a simple low cost scheme for data compression. First, a modified Chi-square periodogram metric is used to adaptively determine the exact time-varying periodicity of the signal. Next, the time-series signal is folded into Frames of length equal to a pre-determined period value. We have successfully tested the scheme for good compression performance in ECG, motion accelerometer data and Parkinson patients samples, leading to 8-14X compression in large sample sizes (6-8K samples) and 2-3X in small sample sizes (200 samples). The proposed scheme can be used stand-alone or as pre-processing step for existing techniques in literature.","PeriodicalId":150900,"journal":{"name":"International Workshop on Pervasive Wireless Healthcare","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Pervasive Wireless Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2491148.2493888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

There is an increase rise in the usage of mobile health sensors in wearable devices and smartphones. These embedded systems have tight limits on storage, computation power, network connectivity and battery usage making it important to ensure efficient storage/ communication of sensor readings to centralized node/ server. Frequency Transform or Entropy encoding schemes such as arithmetic or Huffman coding can be used for compression, but they incur high computational cost in some scenarios or are oblivious to the higher level redundancies in signal. To this end, we used the property of periodicity in these naturally occurring signals such as heart rate or gait measurements to design a simple low cost scheme for data compression. First, a modified Chi-square periodogram metric is used to adaptively determine the exact time-varying periodicity of the signal. Next, the time-series signal is folded into Frames of length equal to a pre-determined period value. We have successfully tested the scheme for good compression performance in ECG, motion accelerometer data and Parkinson patients samples, leading to 8-14X compression in large sample sizes (6-8K samples) and 2-3X in small sample sizes (200 samples). The proposed scheme can be used stand-alone or as pre-processing step for existing techniques in literature.
移动设备上的高效健康数据压缩
在可穿戴设备和智能手机中使用移动健康传感器的情况有所增加。这些嵌入式系统在存储、计算能力、网络连接和电池使用方面有严格的限制,因此确保传感器读数到集中式节点/服务器的有效存储/通信非常重要。频率变换或熵编码方案如算术或霍夫曼编码可用于压缩,但它们在某些情况下产生较高的计算成本或忽略了信号中较高的冗余。为此,我们利用这些自然发生的信号(如心率或步态测量)的周期性特性来设计一种简单的低成本数据压缩方案。首先,采用改进的卡方周期图度量自适应确定信号的精确时变周期。接下来,将时间序列信号折叠成长度等于预先确定的周期值的帧。我们已经成功地测试了该方案在ECG,运动加速度计数据和帕金森患者样本中具有良好的压缩性能,在大样本量(6-8K样本)中压缩8-14X,在小样本量(200样本)中压缩2-3X。所提出的方案可以单独使用,也可以作为文献中现有技术的预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信