Visual impression estimation system considering attribute information

Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani
{"title":"Visual impression estimation system considering attribute information","authors":"Yukiya Taki, K. Kato, Kazunori Terada, Kensuke Tobitani","doi":"10.1117/12.2691716","DOIUrl":null,"url":null,"abstract":"Detailed identification of visual impressions of objects by attributes can be leveraged to develop products and improve customer satisfaction. In this study, we propose a method to estimate Kansei (affective) information for each attribute, which is the visual impression received from the image. For each attribute, we created a dataset with Kansei indices. By fine-tuning the created dataset to combine attribute information with the output of ResNet18 which was already trained with ImageNet to output indexes, we confirmed that the correlation coefficients for multiple item ratings were higher than those of a deep learning model without attribute information.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detailed identification of visual impressions of objects by attributes can be leveraged to develop products and improve customer satisfaction. In this study, we propose a method to estimate Kansei (affective) information for each attribute, which is the visual impression received from the image. For each attribute, we created a dataset with Kansei indices. By fine-tuning the created dataset to combine attribute information with the output of ResNet18 which was already trained with ImageNet to output indexes, we confirmed that the correlation coefficients for multiple item ratings were higher than those of a deep learning model without attribute information.
考虑属性信息的视觉印象估计系统
通过属性详细识别物体的视觉印象可以用来开发产品并提高客户满意度。在这项研究中,我们提出了一种方法来估计每个属性的感性(情感)信息,这是从图像接收到的视觉印象。对于每个属性,我们创建了一个带有感性索引的数据集。通过对创建的数据集进行微调,将属性信息与已经使用ImageNet训练的ResNet18的输出结合起来输出索引,我们证实了多个项目评级的相关系数高于没有属性信息的深度学习模型的相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信