Hybrid wavelet-Hilbert-Huang spectrum analysis

Fu-Tai Wang, Shun-Hsyung Chang, J.C.-Y. Lee
{"title":"Hybrid wavelet-Hilbert-Huang spectrum analysis","authors":"Fu-Tai Wang, Shun-Hsyung Chang, J.C.-Y. Lee","doi":"10.1109/OCEANSE.2005.1513176","DOIUrl":null,"url":null,"abstract":"Empirical mode decomposition (EMD) is a new method pioneered by Huang et al. for non-linear and non-stationary signal analysis. Signals are adaptively decomposed into several zero-mean amplitude modulation-frequency modulation (AM-FM) components. Each AM-FM subsignal has well defined instantaneous frequency (IF) called intrinsic mode functions (IMFs). This paper proposes a wavelet packet based method, to increase the band pass filtering ability of the EMD and this method is illustrated for simulation data of AM-FM signals and the results of IF estimation of signals are shown through both the Hilbert transform and the Teager energy operator (TEO).","PeriodicalId":120840,"journal":{"name":"Europe Oceans 2005","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Oceans 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2005.1513176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Empirical mode decomposition (EMD) is a new method pioneered by Huang et al. for non-linear and non-stationary signal analysis. Signals are adaptively decomposed into several zero-mean amplitude modulation-frequency modulation (AM-FM) components. Each AM-FM subsignal has well defined instantaneous frequency (IF) called intrinsic mode functions (IMFs). This paper proposes a wavelet packet based method, to increase the band pass filtering ability of the EMD and this method is illustrated for simulation data of AM-FM signals and the results of IF estimation of signals are shown through both the Hilbert transform and the Teager energy operator (TEO).
混合小波-希尔伯特-黄谱分析
经验模态分解(Empirical mode decomposition, EMD)是Huang等人提出的一种用于非线性非平稳信号分析的新方法。该算法将信号自适应地分解为若干个零均值调幅调频分量。每个AM-FM子信号都有定义良好的瞬时频率(IF),称为本征模态函数(IMFs)。为了提高EMD的带通滤波能力,本文提出了一种基于小波包的方法,并对调幅调频信号的仿真数据进行了说明,通过Hilbert变换和Teager能量算子(TEO)对信号进行了中频估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信