Reliability analysis for the reactor protection system of HTR-PM

Shuqiao Zhou, Chao Guo, Duo Li
{"title":"Reliability analysis for the reactor protection system of HTR-PM","authors":"Shuqiao Zhou, Chao Guo, Duo Li","doi":"10.1109/ICRMS.2016.8050116","DOIUrl":null,"url":null,"abstract":"A high-temperature gas-cooled reactor-pebble bed module (HTR-PM), as a demonstration nuclear power plant (NPP), is now under construction in the Shandong province of China. The reactor protection system (RPS) in an HTR-PM is a safety-related system and is mainly in charge of monitoring safety-related parameters according to the reactor protection requirements. Thus, an RPS is very important to operations during the entire life cycle of an NPP. An RPS for an HTR-PM is completely designed and developed in China, which owns all intellectual property rights. Traditionally, the reliability of an RPS is evaluated based on a failure mode, effects, and criticality analysis (FMECA) and a fault tree analysis (FTA), which are static methods and cannot reflect the reliability of the system's dynamics. In this paper, we propose a dynamic reliability model for the RPS in an HTR-PM based on the Markov chain theory. Using this model, all states and their dynamic transition processes, especially the degradation process from a 2-out-of-4 structure to a 2-out-of-3 structure, are all determined. Moreover, based on this proposed model, an optimal surveillance test interval can be determined.","PeriodicalId":347031,"journal":{"name":"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRMS.2016.8050116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A high-temperature gas-cooled reactor-pebble bed module (HTR-PM), as a demonstration nuclear power plant (NPP), is now under construction in the Shandong province of China. The reactor protection system (RPS) in an HTR-PM is a safety-related system and is mainly in charge of monitoring safety-related parameters according to the reactor protection requirements. Thus, an RPS is very important to operations during the entire life cycle of an NPP. An RPS for an HTR-PM is completely designed and developed in China, which owns all intellectual property rights. Traditionally, the reliability of an RPS is evaluated based on a failure mode, effects, and criticality analysis (FMECA) and a fault tree analysis (FTA), which are static methods and cannot reflect the reliability of the system's dynamics. In this paper, we propose a dynamic reliability model for the RPS in an HTR-PM based on the Markov chain theory. Using this model, all states and their dynamic transition processes, especially the degradation process from a 2-out-of-4 structure to a 2-out-of-3 structure, are all determined. Moreover, based on this proposed model, an optimal surveillance test interval can be determined.
HTR-PM反应堆保护系统可靠性分析
作为示范核电站的高温气冷堆-球床模块(HTR-PM)正在中国山东省建设中。反应堆防护系统(RPS)是一种安全相关系统,主要负责根据反应堆防护要求对安全相关参数进行监测。因此,在核电厂的整个生命周期中,RPS对运行非常重要。HTR-PM的RPS完全由中国设计和开发,中国拥有所有知识产权。传统的RPS可靠性评估方法是基于故障模式、影响和临界性分析(FMECA)和故障树分析(FTA),这些方法是静态的,不能反映系统的动态可靠性。本文基于马尔可夫链理论,提出了一种HTR-PM中RPS的动态可靠性模型。利用该模型,确定了所有状态及其动态过渡过程,特别是从2-out- 4结构到2-out- 3结构的退化过程。基于该模型,可以确定最优的监测测试间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信