Process Quality Prediction Algorithm of Multi output Workshop Based on ATT-CNN-TCN

Bin Yi, Wenqiang Lin, Wenqi Li, Xiaohua Gao, Bing Zhou, Jun Tang
{"title":"Process Quality Prediction Algorithm of Multi output Workshop Based on ATT-CNN-TCN","authors":"Bin Yi, Wenqiang Lin, Wenqi Li, Xiaohua Gao, Bing Zhou, Jun Tang","doi":"10.1145/3589572.3589590","DOIUrl":null,"url":null,"abstract":"In the view of the existing workshop process quality prediction method for the process parameters related timing information mining is not sufficient, existing research does not consider the contribution of different characteristics to the prediction target difference, this paper proposes the fusion of attention mechanism, convolutional neural network and time convolutional network. The attention module adaptively allocates weight information to the input features, convolutional neural network module to deeply mine the correlation information between process parameters was used, extracts the temporal information between process sequences with time convolutional neural learning, and finally superposition the full connection network mapping to obtain the workshop process quality prediction value. After example verification, the experimental results show that the constructed model is better than other process quality prediction models in the prediction accuracy, stability and network structure.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the view of the existing workshop process quality prediction method for the process parameters related timing information mining is not sufficient, existing research does not consider the contribution of different characteristics to the prediction target difference, this paper proposes the fusion of attention mechanism, convolutional neural network and time convolutional network. The attention module adaptively allocates weight information to the input features, convolutional neural network module to deeply mine the correlation information between process parameters was used, extracts the temporal information between process sequences with time convolutional neural learning, and finally superposition the full connection network mapping to obtain the workshop process quality prediction value. After example verification, the experimental results show that the constructed model is better than other process quality prediction models in the prediction accuracy, stability and network structure.
基于ATT-CNN-TCN的多输出车间工艺质量预测算法
针对现有车间工艺质量预测方法对工艺参数相关时序信息挖掘不够充分,现有研究没有考虑不同特征对预测目标差异的贡献,提出了将注意机制、卷积神经网络和时间卷积网络相融合的方法。注意模块自适应地为输入特征分配权重信息,利用卷积神经网络模块深度挖掘工艺参数之间的相关信息,利用时间卷积神经学习提取工艺序列之间的时间信息,最后将全连接网络映射叠加得到车间工艺质量预测值。经过实例验证,实验结果表明,所构建的模型在预测精度、稳定性和网络结构等方面都优于其他过程质量预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信