Boosting the Performance of MOSFET Operating Under a Huge Range of High Temperature by Using the Octagonal Layout Style

E. Galembeck, J. Swart, Gabriel Augusto da Silva, S. Gimenez
{"title":"Boosting the Performance of MOSFET Operating Under a Huge Range of High Temperature by Using the Octagonal Layout Style","authors":"E. Galembeck, J. Swart, Gabriel Augusto da Silva, S. Gimenez","doi":"10.1109/SBMicro.2019.8919320","DOIUrl":null,"url":null,"abstract":"This paper performs an experimental comparative study of a huge variation of temperature influence (from 300K to 573K) in planar Metal-Oxide-Semiconductor (MOS) Field-Effect-Transistors (MOSFETs), which are implemented with the octagonal (Octo MOSFETs, OM) and rectangular (Rectangular MOSFETs, RM) layout styles, regarding the same bias conditions. The devices were manufactured regarding a Complementary MOS (CMOS) Integrated Circuits (ICs) manufacturing process of 180 nm. The main results have shown that the OM is capable of keeping active the Longitudinal Corner Effect (LCE) and PArallel Connection of MOSFETs with Different Channel Lengths Effect (PAMDLE), which are intrinsic present in its structure, resulting a higher electrical performing in the relation to their RM counterparts, such as the OM saturation drain current (IDS_SAT) and transconductance (gm) are approximately three and two times, respectively, better as compared to those found in its RM counterpart. Therefore, the octagonal layout style for MOSFETs can be considered an alternative layout strategy to boost the electrical performance of the MOSFETs, without causing any additional burden to the CMOS ICs manufacturing process.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper performs an experimental comparative study of a huge variation of temperature influence (from 300K to 573K) in planar Metal-Oxide-Semiconductor (MOS) Field-Effect-Transistors (MOSFETs), which are implemented with the octagonal (Octo MOSFETs, OM) and rectangular (Rectangular MOSFETs, RM) layout styles, regarding the same bias conditions. The devices were manufactured regarding a Complementary MOS (CMOS) Integrated Circuits (ICs) manufacturing process of 180 nm. The main results have shown that the OM is capable of keeping active the Longitudinal Corner Effect (LCE) and PArallel Connection of MOSFETs with Different Channel Lengths Effect (PAMDLE), which are intrinsic present in its structure, resulting a higher electrical performing in the relation to their RM counterparts, such as the OM saturation drain current (IDS_SAT) and transconductance (gm) are approximately three and two times, respectively, better as compared to those found in its RM counterpart. Therefore, the octagonal layout style for MOSFETs can be considered an alternative layout strategy to boost the electrical performance of the MOSFETs, without causing any additional burden to the CMOS ICs manufacturing process.
采用八角形布局方式提高MOSFET在大范围高温下的工作性能
在相同的偏置条件下,采用八角形(Octo mosfet, OM)和矩形(矩形mosfet, RM)布局方式实现的平面金属氧化物半导体(MOS)场效应晶体管(mosfet)的温度影响(从300K到573K)的巨大变化进行了实验比较研究。该器件采用180 nm的互补MOS (CMOS)集成电路(ic)制造工艺制造。主要结果表明,OM能够保持具有不同通道长度效应(PAMDLE)的mosfet的纵向角效应(LCE)和并联连接的活动,这是其结构中固有的,导致更高的电性能相对于RM对应物,例如OM饱和漏极电流(IDS_SAT)和跨导(gm)分别约为三倍和两倍。比在RM中发现的更好。因此,mosfet的八角形布局风格可以被认为是提高mosfet电气性能的另一种布局策略,而不会给CMOS ic制造过程带来任何额外的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信