Off-line Farsi / arabic handwritten word recognition using vector quantization and hidden Markov model

B. Vaseghi, S. Alirezaee, M. Ahmadi, R. Amirfattahi
{"title":"Off-line Farsi / arabic handwritten word recognition using vector quantization and hidden Markov model","authors":"B. Vaseghi, S. Alirezaee, M. Ahmadi, R. Amirfattahi","doi":"10.1109/INMIC.2008.4777804","DOIUrl":null,"url":null,"abstract":"In this paper a Farsi handwritten word recognition system for reading city names in postal addresses is presented. The method is based on vector quantization (VQ) and hidden Markov model (HMM). The sliding right to left window is used to extract the proper features(we have proposed four features). After feature extraction, K-means clustering is used for generation a codebook and VQ generates a codeword for each word image. In the next stage, HMM is trained by Baum Welch algorithm for each city name. A test image is recognized by finding the best match (likelihood) between the image and all of the HMM words models using forward algorithm. Experimental results show the advantages of using VQ/HMM recognizer engine instead of conventional discrete HMM.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper a Farsi handwritten word recognition system for reading city names in postal addresses is presented. The method is based on vector quantization (VQ) and hidden Markov model (HMM). The sliding right to left window is used to extract the proper features(we have proposed four features). After feature extraction, K-means clustering is used for generation a codebook and VQ generates a codeword for each word image. In the next stage, HMM is trained by Baum Welch algorithm for each city name. A test image is recognized by finding the best match (likelihood) between the image and all of the HMM words models using forward algorithm. Experimental results show the advantages of using VQ/HMM recognizer engine instead of conventional discrete HMM.
离线波斯语/阿拉伯语手写单词识别使用矢量量化和隐马尔可夫模型
本文介绍了一种波斯语手写城市名称识别系统。该方法基于矢量量化(VQ)和隐马尔可夫模型(HMM)。从右到左的滑动窗口用于提取适当的特征(我们提出了四个特征)。特征提取后,使用K-means聚类生成码本,VQ为每个字图像生成一个码字。在下一阶段,使用Baum Welch算法对每个城市名称进行HMM训练。使用前向算法找到图像与所有HMM词模型之间的最佳匹配(似然)来识别测试图像。实验结果表明,使用VQ/HMM识别引擎代替传统的离散HMM识别具有一定的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信