Adaptive IIR Filtering and Output Error Identification: Robustness Analysis

Sanjeev M. Naik, P. Kumar
{"title":"Adaptive IIR Filtering and Output Error Identification: Robustness Analysis","authors":"Sanjeev M. Naik, P. Kumar","doi":"10.23919/ACC.1992.4792350","DOIUrl":null,"url":null,"abstract":"Recently, global convergence and parameter consistency of a certain parallel model adaptation algorithm in the presence of additive colored noise was established in [1]. In this paper, we examine the robustness of this algorithm, whose design is based on stochastic considerations, to bounded disturbances and unmodeled dynamics. We show that this algorithm is robust with respect to bounded disturbances and unmodeled dynamics whenever the denominator polynomial of the nominal model satisfies a strictly positive real (SPR) condition. We also show that the admissible class of unmodeled dynamics allows the true system to violate such an SPR condition. Similar robustness results are also proved for a non-vanishing gain update law.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"15 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1992.4792350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, global convergence and parameter consistency of a certain parallel model adaptation algorithm in the presence of additive colored noise was established in [1]. In this paper, we examine the robustness of this algorithm, whose design is based on stochastic considerations, to bounded disturbances and unmodeled dynamics. We show that this algorithm is robust with respect to bounded disturbances and unmodeled dynamics whenever the denominator polynomial of the nominal model satisfies a strictly positive real (SPR) condition. We also show that the admissible class of unmodeled dynamics allows the true system to violate such an SPR condition. Similar robustness results are also proved for a non-vanishing gain update law.
自适应IIR滤波与输出误差辨识:鲁棒性分析
最近,文献[1]建立了存在加性有色噪声时某并行模型自适应算法的全局收敛性和参数一致性。在本文中,我们研究了该算法的鲁棒性,其设计是基于随机考虑,有界干扰和未建模的动态。我们证明了该算法对于有界扰动和未建模动力学是鲁棒的,只要名义模型的分母多项式满足严格正实数(SPR)条件。我们还证明了未建模动力学的容许类允许真系统违反这样的SPR条件。对于非消失增益更新律也证明了类似的鲁棒性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信