Assessment Of Pca And Mnf Influence In The Vhr Satellite Image Classifications

P. C. Molina, M. P. Castro, C. S. Anjos
{"title":"Assessment Of Pca And Mnf Influence In The Vhr Satellite Image Classifications","authors":"P. C. Molina, M. P. Castro, C. S. Anjos","doi":"10.1109/LAGIRS48042.2020.9165680","DOIUrl":null,"url":null,"abstract":"Orbital images have been increasingly refined spatially as spectrally as that is the case with those provided by satellite Earth observation WorldView-3 used in this paper. However, the images are very susceptible to noise interference, so it is difficult to identify and characterize objects. Therefore, it is essential to use techniques to minimize them. Thus, through increasingly innovative processing, it is possible to carry out detailed characterization mainly of urban areas. This work aims to perform the classification of images Worldview-3 using the advanced methods of classification Random Forest and Deep Learning for the region of Botafogo in the municipality of Rio de Janeiro, Brazil. Such classifications were performed for four different data sets, including the spectral bands and transformations (MNF and PCA) resulting from the original images. The results demonstrate that the use of transformations resulting from the original images as input data for the extraction of attributes in conjunction with the spectral bands improves the accuracy of the classifications generated by the Random Forest and Deep Learning method.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orbital images have been increasingly refined spatially as spectrally as that is the case with those provided by satellite Earth observation WorldView-3 used in this paper. However, the images are very susceptible to noise interference, so it is difficult to identify and characterize objects. Therefore, it is essential to use techniques to minimize them. Thus, through increasingly innovative processing, it is possible to carry out detailed characterization mainly of urban areas. This work aims to perform the classification of images Worldview-3 using the advanced methods of classification Random Forest and Deep Learning for the region of Botafogo in the municipality of Rio de Janeiro, Brazil. Such classifications were performed for four different data sets, including the spectral bands and transformations (MNF and PCA) resulting from the original images. The results demonstrate that the use of transformations resulting from the original images as input data for the extraction of attributes in conjunction with the spectral bands improves the accuracy of the classifications generated by the Random Forest and Deep Learning method.
Pca和Mnf在Vhr卫星图像分类中的影响评估
与本文中使用的卫星地球观测WorldView-3提供的图像一样,轨道图像在空间和光谱上都得到了越来越精确的处理。然而,图像很容易受到噪声的干扰,因此很难识别和表征目标。因此,使用技术将它们最小化是必要的。因此,通过越来越创新的处理,可以主要对城市地区进行详细的表征。这项工作旨在使用先进的分类随机森林和深度学习方法对巴西里约热内卢市博塔弗戈地区的图像Worldview-3进行分类。对四种不同的数据集进行分类,包括原始图像的光谱带和变换(MNF和PCA)。结果表明,使用原始图像的变换结果作为输入数据,结合光谱波段提取属性,提高了随机森林和深度学习方法生成的分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信