George Retsinas, N. Stamatopoulos, G. Louloudis, Giorgos Sfikas, B. Gatos
{"title":"Nonlinear Manifold Embedding on Keyword Spotting Using t-SNE","authors":"George Retsinas, N. Stamatopoulos, G. Louloudis, Giorgos Sfikas, B. Gatos","doi":"10.1109/ICDAR.2017.86","DOIUrl":null,"url":null,"abstract":"Nonlinear manifold embedding has attracted considerable attention due to its highly-desired property of efficiently encoding local structure, i.e. intrinsic space properties, into a low-dimensional space. The benefit of such an approach is twofold: it leads to compact representations while addressing the often-encountered curse of dimensionality. The latter plays an important role in retrieval applications, such as keyword spotting, where a sorted list of retrieved objects with respect to a distance metric is required. In this work, we explore the efficiency of the popular manifold embedding method t-distributed Stochastic Neighbor Embedding (t-SNE) on the Query-by-Example keyword spotting task. The main contribution of this work is the extension of t-SNE in order to support out-of-sample (OOS) embedding which is essential for mapping query images to the embedding space. The experimental results demonstrate a significant increase in keyword spotting performance when the word similarity is calculated on the embedding space.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Nonlinear manifold embedding has attracted considerable attention due to its highly-desired property of efficiently encoding local structure, i.e. intrinsic space properties, into a low-dimensional space. The benefit of such an approach is twofold: it leads to compact representations while addressing the often-encountered curse of dimensionality. The latter plays an important role in retrieval applications, such as keyword spotting, where a sorted list of retrieved objects with respect to a distance metric is required. In this work, we explore the efficiency of the popular manifold embedding method t-distributed Stochastic Neighbor Embedding (t-SNE) on the Query-by-Example keyword spotting task. The main contribution of this work is the extension of t-SNE in order to support out-of-sample (OOS) embedding which is essential for mapping query images to the embedding space. The experimental results demonstrate a significant increase in keyword spotting performance when the word similarity is calculated on the embedding space.