A Study on the Generation of Webtoons through Fine-Tuning of Diffusion Models

Kyungho Yu, Hyungju Kim, Jeongin Kim, Chanjun Chun, Pankoo Kim
{"title":"A Study on the Generation of Webtoons through Fine-Tuning of Diffusion Models","authors":"Kyungho Yu, Hyungju Kim, Jeongin Kim, Chanjun Chun, Pankoo Kim","doi":"10.30693/smj.2023.12.7.76","DOIUrl":null,"url":null,"abstract":"This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.7.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.
基于扩散模型微调的网络卡通生成研究
本研究提出了一种方法,利用预训练的文本到图像模型,从文本生成网络漫画图像,以帮助网络漫画艺术家在创作网络漫画的过程中。提出的方法包括使用将网络漫画数据集转换为所需的网络漫画风格来微调预训练的稳定扩散模型。使用LoRA技术的微调过程在大约4.5小时的快速训练时间内完成,步骤为30,000步。生成的图像显示基于输入文本的形状和背景的表示,从而创建类似网络漫画的图像。此外,使用Inception分数的定量评估表明,所提出的方法优于基于dcgan的文本到图像模型。如果网络漫画艺术家采用本文提出的文本到图像模式进行网络漫画创作,预计将大大减少创作过程所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信