Kyungho Yu, Hyungju Kim, Jeongin Kim, Chanjun Chun, Pankoo Kim
{"title":"A Study on the Generation of Webtoons through Fine-Tuning of Diffusion Models","authors":"Kyungho Yu, Hyungju Kim, Jeongin Kim, Chanjun Chun, Pankoo Kim","doi":"10.30693/smj.2023.12.7.76","DOIUrl":null,"url":null,"abstract":"This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.7.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.