Dremel: Adaptive Configuration Tuning of RocksDB KV-Store

Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming G. Liu, A. Krishnamurthy
{"title":"Dremel: Adaptive Configuration Tuning of RocksDB KV-Store","authors":"Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming G. Liu, A. Krishnamurthy","doi":"10.1145/3489048.3530970","DOIUrl":null,"url":null,"abstract":"LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) optimal configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. We present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the large parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up configuration search. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvement over prior works on 18 different settings with the same or smaller time budget. This paper is an abridged version.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3530970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) optimal configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. We present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the large parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up configuration search. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvement over prior works on 18 different settings with the same or smaller time budget. This paper is an abridged version.
Dremel: RocksDB KV-Store自适应配置调优
像RocksDB这样基于lsm树的键值存储被广泛用于支持许多应用程序。然而,配置一个RocksDB实例是具有挑战性的,原因如下:1)RocksDB有大量的参数空间需要配置;2)参数之间存在固有的权衡和依赖关系;3)最优配置取决于工作负载和硬件;4)评估配置非常耗时。先前的工作与处理维度的诅咒、捕获参数之间的关系、调整配置以适应工作负载和硬件以及快速评估有关。我们提出了一个基于Multi-Armed Bandit模型的自适应快速配置RocksDB的系统Dremel。为了处理大的参数空间,我们提出使用融合特征来编码特定于领域的知识,作为一个紧凑而强大的配置表示。为了适应工作负载和硬件,我们建立了一个在线强盗模型来确定最佳配置。为了快速评估,我们启用了多保真度评估和上置信度抽样来加快配置搜索。与默认配置相比,Dremel不仅实现了×2.61更高的IOPS和57%的延迟,而且在相同或更小的时间预算下,在18种不同的设置上实现了63%的改进。这篇论文是节略版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信