A recursive errors-in-variables method for tracking time varying autoregressive parameters from noisy observations

J. Petitjean, É. Grivel, R. Diversi, R. Guidorzi
{"title":"A recursive errors-in-variables method for tracking time varying autoregressive parameters from noisy observations","authors":"J. Petitjean, É. Grivel, R. Diversi, R. Guidorzi","doi":"10.5281/ZENODO.41910","DOIUrl":null,"url":null,"abstract":"Time Varying Autoregressive (TVAR) models play a key role in various applications such as radar processing, aeronautics and speech processing. Nevertheless, tracking TVAR parameters may be difficult, especially when the process is disturbed by an additive white noise. In this paper, we suggest the use of a recursive Errors-In-Variables method to estimate the variances of the driving process and the additive noise and to track TVAR parameters. This method is based on a Newton-Raphson algorithm. A comparative study with EKF, UKF and CDKF is also proposed.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Time Varying Autoregressive (TVAR) models play a key role in various applications such as radar processing, aeronautics and speech processing. Nevertheless, tracking TVAR parameters may be difficult, especially when the process is disturbed by an additive white noise. In this paper, we suggest the use of a recursive Errors-In-Variables method to estimate the variances of the driving process and the additive noise and to track TVAR parameters. This method is based on a Newton-Raphson algorithm. A comparative study with EKF, UKF and CDKF is also proposed.
一种从噪声观测中跟踪时变自回归参数的递归变量误差方法
时变自回归(TVAR)模型在雷达处理、航空航天和语音处理等领域发挥着重要作用。然而,跟踪TVAR参数可能是困难的,特别是当过程受到加性白噪声的干扰时。在本文中,我们建议使用递归误差变量方法来估计驱动过程和加性噪声的方差,并跟踪TVAR参数。该方法基于牛顿-拉夫森算法。并提出了与EKF、UKF和CDKF的比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信