Hardness of approximating the minimum distance of a linear code

I. Dumer, Daniele Micciancio, M. Sudan
{"title":"Hardness of approximating the minimum distance of a linear code","authors":"I. Dumer, Daniele Micciancio, M. Sudan","doi":"10.1109/SFFCS.1999.814620","DOIUrl":null,"url":null,"abstract":"We show that the minimum distance of a linear code (or equivalently, the weight of the lightest codeword) is not approximable to within any constant factor in random polynomial time (RP), unless NP equals RP. Under the stronger assumption that NP is not contained in RQP (random quasi-polynomial time), we show that the minimum distance is not approximable to within the factor 2/sup log(1-/spl epsiv/)n/, for any /spl epsiv/>0, where n denotes the block length of the code. Our results hold for codes over every finite field, including the special case of binary codes. In the process we show that the nearest codeword problem is hard to solve even under the promise that the number of errors is (a constant factor) smaller than the distance of the code. This is a particularly meaningful version of the nearest codeword problem. Our results strengthen (though using stronger assumptions) a previous result of A. Vardy (1997) who showed that the minimum distance is NP-hard to compute exactly. Our results are obtained by adapting proofs of analogous results for integer lattices due to M. Ajtai (1998) and D. Micciancio (1998). A critical component in the adaptation is our use of linear codes that perform better than random (linear) codes.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

Abstract

We show that the minimum distance of a linear code (or equivalently, the weight of the lightest codeword) is not approximable to within any constant factor in random polynomial time (RP), unless NP equals RP. Under the stronger assumption that NP is not contained in RQP (random quasi-polynomial time), we show that the minimum distance is not approximable to within the factor 2/sup log(1-/spl epsiv/)n/, for any /spl epsiv/>0, where n denotes the block length of the code. Our results hold for codes over every finite field, including the special case of binary codes. In the process we show that the nearest codeword problem is hard to solve even under the promise that the number of errors is (a constant factor) smaller than the distance of the code. This is a particularly meaningful version of the nearest codeword problem. Our results strengthen (though using stronger assumptions) a previous result of A. Vardy (1997) who showed that the minimum distance is NP-hard to compute exactly. Our results are obtained by adapting proofs of analogous results for integer lattices due to M. Ajtai (1998) and D. Micciancio (1998). A critical component in the adaptation is our use of linear codes that perform better than random (linear) codes.
近似线性代码最小距离的硬度
我们证明了线性码的最小距离(或等价地,最轻码字的权重)在随机多项式时间(RP)内不能近似于任何常数因子,除非NP等于RP。在RQP(随机拟多项式时间)中不包含NP的更强假设下,我们证明了对于任意/spl epsiv/>0,最小距离不接近于因子2/sup log(1-/spl epsiv/)n/,其中n表示代码的块长度。我们的结果适用于所有有限域上的码,包括二进制码的特殊情况。在此过程中,我们证明了即使在承诺错误数(常数因子)小于代码距离的情况下,最接近码字问题也很难解决。这是最近码字问题的一个特别有意义的版本。我们的结果加强了a . Vardy(1997)之前的一个结果(尽管使用了更强的假设),他表明最小距离是np难以精确计算的。我们的结果是通过改编M. Ajtai(1998)和D. Micciancio(1998)对整数格的类似结果的证明而得到的。适应性的一个关键组成部分是我们使用比随机(线性)代码性能更好的线性代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信