{"title":"Comparison of implicit and explicit feedback from an online music recommendation service","authors":"Gawesh Jawaheer, M. Szomszor, P. Kostkova","doi":"10.1145/1869446.1869453","DOIUrl":null,"url":null,"abstract":"Explicit and implicit feedback exhibits different characteristics of users' preferences with both pros and cons. However, a combination of these two types of feedback provides another paradigm for recommender systems (RS). Their combination in a user preference model presents a number of challenges but can also overcome the problems associated with each other. In order to build an effective RS on combination of both types of feedback, we need to have comparative data allowing an understanding of the computation of user preferences. In this paper, we provide an overview of the differentiating characteristics of explicit and implicit feedback using datasets mined from Last.fm, an online music station and recommender service. The datasets consisted of explicit positive feedback (by loving tracks) and implicit feedback which is inherently positive (the number of times a track is played). Rather than relying on just one type of feedback, we present techniques for extracting user preferences from both. In order to compare and contrast the performances of these techniques, we carried out experiments using the Taste recommender system engine and the Last.fm datasets. Our results show that implicit and explicit positive feedback complements each other, with similar performances despite their different characteristics.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"213","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 213
Abstract
Explicit and implicit feedback exhibits different characteristics of users' preferences with both pros and cons. However, a combination of these two types of feedback provides another paradigm for recommender systems (RS). Their combination in a user preference model presents a number of challenges but can also overcome the problems associated with each other. In order to build an effective RS on combination of both types of feedback, we need to have comparative data allowing an understanding of the computation of user preferences. In this paper, we provide an overview of the differentiating characteristics of explicit and implicit feedback using datasets mined from Last.fm, an online music station and recommender service. The datasets consisted of explicit positive feedback (by loving tracks) and implicit feedback which is inherently positive (the number of times a track is played). Rather than relying on just one type of feedback, we present techniques for extracting user preferences from both. In order to compare and contrast the performances of these techniques, we carried out experiments using the Taste recommender system engine and the Last.fm datasets. Our results show that implicit and explicit positive feedback complements each other, with similar performances despite their different characteristics.