Chaos Control in Duffing-Van Der Pol System

Zhiyan Yang, T. Jiang, Zhujun Jing
{"title":"Chaos Control in Duffing-Van Der Pol System","authors":"Zhiyan Yang, T. Jiang, Zhujun Jing","doi":"10.1109/IWCFTA.2010.32","DOIUrl":null,"url":null,"abstract":"In this paper we present analytical and numerical results concerning the inhibition of chaos in Duffing-van der Pol system with fifth nonlinear-restoring force and two external forcing terms. We theoretically give parameter-space regions interval of initial phase difference on the basis of Melnikov methods proposed in [6], where homoclinic chaos can be suppressed. Numerical simulation results show the consistence with the theoretical analysis and find that the chaotic motions can be controlled to period-motions by adjusting phase difference and amplitude of second forcing excitation. Moreover, we give the distribution of maximum Lyapunov exponents(LE) in parameter plane, which shows the regions of non-chaotic states (non-positive LE) and chaotic states (positive LE).","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we present analytical and numerical results concerning the inhibition of chaos in Duffing-van der Pol system with fifth nonlinear-restoring force and two external forcing terms. We theoretically give parameter-space regions interval of initial phase difference on the basis of Melnikov methods proposed in [6], where homoclinic chaos can be suppressed. Numerical simulation results show the consistence with the theoretical analysis and find that the chaotic motions can be controlled to period-motions by adjusting phase difference and amplitude of second forcing excitation. Moreover, we give the distribution of maximum Lyapunov exponents(LE) in parameter plane, which shows the regions of non-chaotic states (non-positive LE) and chaotic states (positive LE).
Duffing-Van Der Pol系统的混沌控制
本文给出了用第五种非线性恢复力和两种外力项抑制Duffing-van der - Pol系统混沌的解析和数值结果。我们在[6]提出的Melnikov方法的基础上,理论上给出了初始相位差的参数空间区域区间,该区间可以抑制同宿混沌。数值模拟结果与理论分析一致,发现通过调整二次激励的相位差和幅值,可以将混沌运动控制为周期运动。此外,我们给出了最大李雅普诺夫指数(LE)在参数平面上的分布,显示了非混沌状态(非正LE)和混沌状态(正LE)的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信