Evolving Counterfactual Explanations with Particle Swarm Optimization and Differential Evolution

Hayden Andersen, Andrew Lensen, Will N. Browne, Yi Mei
{"title":"Evolving Counterfactual Explanations with Particle Swarm Optimization and Differential Evolution","authors":"Hayden Andersen, Andrew Lensen, Will N. Browne, Yi Mei","doi":"10.1109/CEC55065.2022.9870283","DOIUrl":null,"url":null,"abstract":"Counterfactual explanations are a popular eXplainable AI technique, used to provide contrastive answers to “what-if” questions. These explanations are consistent with the way that an everyday person will explain an event, and have been shown to satisfy the ‘right to explanation’ of the European data regulations. Despite this, current work to generate counterfactual explanations either makes assumptions about the model being explained or utlises algorithms that perform suboptimally on continuous data. This work presents two novel algorithms to generate counterfactual explanations using Particle Swarm Optimization (PSO) and Differential Evolution (DE). These are shown to provide effective post-hoc explanations that make no assumptions about the underlying model or data structure. In particular, PSO is shown to generate counterfactual explanations that utilise significantly fewer features to generate sparser explanations when compared to previous related work.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Counterfactual explanations are a popular eXplainable AI technique, used to provide contrastive answers to “what-if” questions. These explanations are consistent with the way that an everyday person will explain an event, and have been shown to satisfy the ‘right to explanation’ of the European data regulations. Despite this, current work to generate counterfactual explanations either makes assumptions about the model being explained or utlises algorithms that perform suboptimally on continuous data. This work presents two novel algorithms to generate counterfactual explanations using Particle Swarm Optimization (PSO) and Differential Evolution (DE). These are shown to provide effective post-hoc explanations that make no assumptions about the underlying model or data structure. In particular, PSO is shown to generate counterfactual explanations that utilise significantly fewer features to generate sparser explanations when compared to previous related work.
基于粒子群优化和差分进化的反事实解释演化
反事实解释是一种流行的可解释人工智能技术,用于为“假设”问题提供对比答案。这些解释与普通人解释事件的方式一致,并已被证明符合欧洲数据法规的“解释权”。尽管如此,目前产生反事实解释的工作要么对被解释的模型做出假设,要么利用在连续数据上执行次优的算法。本文提出了两种利用粒子群优化(PSO)和差分进化(DE)生成反事实解释的新算法。它们提供了有效的事后解释,不需要对底层模型或数据结构做任何假设。特别是,与之前的相关工作相比,PSO被证明可以生成反事实解释,这些解释利用的特征明显更少,产生的解释更稀疏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信