Enhancing Conversational Agents with Empathic Abilities

Jacky Casas, Timo Spring, Karl Daher, E. Mugellini, Omar Abou Khaled, P. Cudré-Mauroux
{"title":"Enhancing Conversational Agents with Empathic Abilities","authors":"Jacky Casas, Timo Spring, Karl Daher, E. Mugellini, Omar Abou Khaled, P. Cudré-Mauroux","doi":"10.1145/3472306.3478344","DOIUrl":null,"url":null,"abstract":"Conversational agents are getting increasingly popular and find applications in health and customer services. Conversations in these fields are often emotionally charged. It is, therefore, necessary to handle the conversation with some degree of empathy to be effective. In this work, we leverage advances in the field of natural language processing to create a dialogue system that can convincingly generate empathic responses to text-based messages. To improve the system's ability to converse with empathy, we train the language model on empathic conversations and inject additional emotional information in the response generation. We propose two chatbots: a benchmark bot and an empathic bot. Additionally, we implement an emotion classifier that allows us to predict the emotional state of text-based messages. We evaluate both chatbots in quantitative studies and compare them with human responses in qualitative studies involving human judges. Our evaluation shows that our empathic chatbot outperforms the benchmark bot and even the human-generated responses in terms of perceived empathy. Additionally, we achieve state-of-the-art results in terms of response quality using transformer-based language models. Finally we report that we can double the initial performance of the emotion classifier using undersampling techniques, yielding a final F1-score of 0.81 in six basic emotions.","PeriodicalId":148152,"journal":{"name":"Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472306.3478344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Conversational agents are getting increasingly popular and find applications in health and customer services. Conversations in these fields are often emotionally charged. It is, therefore, necessary to handle the conversation with some degree of empathy to be effective. In this work, we leverage advances in the field of natural language processing to create a dialogue system that can convincingly generate empathic responses to text-based messages. To improve the system's ability to converse with empathy, we train the language model on empathic conversations and inject additional emotional information in the response generation. We propose two chatbots: a benchmark bot and an empathic bot. Additionally, we implement an emotion classifier that allows us to predict the emotional state of text-based messages. We evaluate both chatbots in quantitative studies and compare them with human responses in qualitative studies involving human judges. Our evaluation shows that our empathic chatbot outperforms the benchmark bot and even the human-generated responses in terms of perceived empathy. Additionally, we achieve state-of-the-art results in terms of response quality using transformer-based language models. Finally we report that we can double the initial performance of the emotion classifier using undersampling techniques, yielding a final F1-score of 0.81 in six basic emotions.
增强会话代理的移情能力
会话代理越来越受欢迎,并在健康和客户服务中得到应用。这些领域的对话往往充满感情。因此,有必要以某种程度的同理心来处理对话,这样才能有效。在这项工作中,我们利用自然语言处理领域的进步来创建一个对话系统,该系统可以令人信服地对基于文本的信息产生移情反应。为了提高系统的移情对话能力,我们对移情对话的语言模型进行了训练,并在响应生成中注入了额外的情感信息。我们提出了两个聊天机器人:一个基准机器人和一个移情机器人。此外,我们实现了一个情感分类器,它允许我们预测基于文本的消息的情感状态。我们在定量研究中评估了这两个聊天机器人,并将它们与涉及人类法官的定性研究中的人类反应进行了比较。我们的评估表明,我们的移情聊天机器人在感知移情方面优于基准机器人,甚至优于人类生成的反应。此外,我们使用基于变压器的语言模型在响应质量方面获得了最先进的结果。最后,我们报告说,我们可以使用欠采样技术将情绪分类器的初始性能提高一倍,在六种基本情绪中产生最终的f1得分为0.81。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信