Evaluation of Deep Learning Neural Networks with Input Processing for Bearing Fault Diagonosis

Yuanyang Cai, Lizhe Tan, Junngan Chen
{"title":"Evaluation of Deep Learning Neural Networks with Input Processing for Bearing Fault Diagonosis","authors":"Yuanyang Cai, Lizhe Tan, Junngan Chen","doi":"10.1109/EIT51626.2021.9491871","DOIUrl":null,"url":null,"abstract":"Deep learning networks have been widely used as effective methods for bearing fault diagnosis. Deep learning neural networks such as convolutional neural network (CNN) use the images as inputs while the others such as long-short term memory (LSTM) may apply data sequences as inputs. This paper focuses on performance evaluations of deep learning networks by utilizing various signal transforms to form the network inputs. The CNN and LSTM are adopted as our deep learning network structures. Besides raw data, the algorithms for processing input signals include short-time Fourier transform (STFT), Cepstrum, wavelet packet transform (WPT), and empirical mode decomposition (EMD). Our simulations validate the effectiveness for each network input formulation based on the Case Western Reserve University’s (CWRU) bearing dataset.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning networks have been widely used as effective methods for bearing fault diagnosis. Deep learning neural networks such as convolutional neural network (CNN) use the images as inputs while the others such as long-short term memory (LSTM) may apply data sequences as inputs. This paper focuses on performance evaluations of deep learning networks by utilizing various signal transforms to form the network inputs. The CNN and LSTM are adopted as our deep learning network structures. Besides raw data, the algorithms for processing input signals include short-time Fourier transform (STFT), Cepstrum, wavelet packet transform (WPT), and empirical mode decomposition (EMD). Our simulations validate the effectiveness for each network input formulation based on the Case Western Reserve University’s (CWRU) bearing dataset.
带输入处理的深度学习神经网络在轴承故障诊断中的评价
深度学习网络作为轴承故障诊断的有效方法已得到广泛应用。深度学习神经网络(如卷积神经网络(CNN))使用图像作为输入,而其他神经网络(如长短期记忆(LSTM))可能使用数据序列作为输入。本文通过利用各种信号变换来形成网络输入,重点研究深度学习网络的性能评估。采用CNN和LSTM作为我们的深度学习网络结构。除原始数据外,处理输入信号的算法还包括短时傅里叶变换(STFT)、倒频谱、小波包变换(WPT)和经验模态分解(EMD)。我们的模拟验证了基于凯斯西储大学(CWRU)轴承数据集的每个网络输入公式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信