Multitask training with unlabeled data for end-to-end sign language fingerspelling recognition

Bowen Shi, Karen Livescu
{"title":"Multitask training with unlabeled data for end-to-end sign language fingerspelling recognition","authors":"Bowen Shi, Karen Livescu","doi":"10.1109/ASRU.2017.8268962","DOIUrl":null,"url":null,"abstract":"We address the problem of automatic American Sign Language fingerspelling recognition from video. Prior work has largely relied on frame-level labels, hand-crafted features, or other constraints, and has been hampered by the scarcity of data for this task. We introduce a model for fingerspelling recognition that addresses these issues. The model consists of an auto-encoder-based feature extractor and an attention-based neural encoder-decoder, which are trained jointly. The model receives a sequence of image frames and outputs the fingerspelled word, without relying on any frame-level training labels or hand-crafted features. In addition, the auto-encoder subcomponent makes it possible to leverage unlabeled data to improve the feature learning. The model achieves 11.6% and 4.4% absolute letter accuracy improvement respectively in signer-independent and signer-adapted fingerspelling recognition over previous approaches that required frame-level training labels.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We address the problem of automatic American Sign Language fingerspelling recognition from video. Prior work has largely relied on frame-level labels, hand-crafted features, or other constraints, and has been hampered by the scarcity of data for this task. We introduce a model for fingerspelling recognition that addresses these issues. The model consists of an auto-encoder-based feature extractor and an attention-based neural encoder-decoder, which are trained jointly. The model receives a sequence of image frames and outputs the fingerspelled word, without relying on any frame-level training labels or hand-crafted features. In addition, the auto-encoder subcomponent makes it possible to leverage unlabeled data to improve the feature learning. The model achieves 11.6% and 4.4% absolute letter accuracy improvement respectively in signer-independent and signer-adapted fingerspelling recognition over previous approaches that required frame-level training labels.
端到端手语拼写识别的无标记数据多任务训练
我们解决了从视频中自动识别美国手语指纹拼写的问题。先前的工作很大程度上依赖于框架级标签、手工制作的特征或其他限制,并且由于该任务的数据稀缺而受到阻碍。我们引入了一个用于指纹识别的模型来解决这些问题。该模型由一个基于自编码器的特征提取器和一个基于注意力的神经编码器组成,它们是联合训练的。该模型接收一系列图像帧并输出手指拼写的单词,而不依赖于任何帧级训练标签或手工制作的特征。此外,自编码器子组件使得利用未标记数据来改进特征学习成为可能。与之前需要帧级训练标签的方法相比,该模型在独立于签名人和适应签名人的指纹识别中分别实现了11.6%和4.4%的绝对字母准确率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信