An Efficient Hierarchical Layered Graph Approach for Multi-Region Segmentation

L. C. Leon, K. Ciesielski, P. A. Miranda
{"title":"An Efficient Hierarchical Layered Graph Approach for Multi-Region Segmentation","authors":"L. C. Leon, K. Ciesielski, P. A. Miranda","doi":"10.5753/sibgrapi.est.2019.8301","DOIUrl":null,"url":null,"abstract":"We proposed a novel efficient seed-based method for the multiple region segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min-cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.","PeriodicalId":119031,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2019.8301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a novel efficient seed-based method for the multiple region segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min-cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.
一种高效的分层图多区域分割方法
提出了一种高效的基于种子的基于图的图像多区域分割方法——面向分层分层的图像森林变换(HLOIFT)。它使用图像对象之间的关系树,由节点表示。每个树节点可能包含不同的单独高级先验,并定义一个加权有向图,称为层。然后考虑包含和排除的层次关系,将层图整合成一个层次图。在分层加权有向图中进行单个能量优化,得到满足所有高级先验的全局最优结果。HLOIFT及其扩展在医学、自然和合成图像上的实验评估表明,与最先进的方法相当的有希望的结果,但计算复杂性较低。与min-cut/max-flow算法的分层分割相比,我们的方法限制更少,在更一般的场景下产生全局最优结果,并且具有更好的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信