Classification System for Leukemia Cell Images based on Hu Moment Invariants and Support Vector Machines

Y. Jusman, S. Riyadi, A. Faisal, S. N. A. Kanafiah, Z. Mohamed, R. Hassan
{"title":"Classification System for Leukemia Cell Images based on Hu Moment Invariants and Support Vector Machines","authors":"Y. Jusman, S. Riyadi, A. Faisal, S. N. A. Kanafiah, Z. Mohamed, R. Hassan","doi":"10.1109/ICCSCE52189.2021.9530974","DOIUrl":null,"url":null,"abstract":"Leukemia is cancer that attacks the tissues of white blood cells. It occurs when the body produces abnormal blood cells exceeding normal limits; thus, causing them not to function properly. It has a huge effect on the immune system of humans. Medical personnel currently need a long time to recognize leukemia and distinguish acute leukemia cells from normal cells. This study aims to build a classification system of white blood cell images using a feature extraction technique with Hu moment invariants and Support Vector Machine (SVM) classification methods. In this study, the data of 800 blood image samples were divided into two classes, acute and normal, with each class having 400 sample images. The calculation of the average accuracy and average time value on the system obtained the accuracy value of 88% and the required time of 3.73 seconds. The highest accuracy values for the testing data is 95% with duration time 0.89 seconds. The system could classify the leukemia images using Hu moment invariants and SVM.","PeriodicalId":285507,"journal":{"name":"2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE52189.2021.9530974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Leukemia is cancer that attacks the tissues of white blood cells. It occurs when the body produces abnormal blood cells exceeding normal limits; thus, causing them not to function properly. It has a huge effect on the immune system of humans. Medical personnel currently need a long time to recognize leukemia and distinguish acute leukemia cells from normal cells. This study aims to build a classification system of white blood cell images using a feature extraction technique with Hu moment invariants and Support Vector Machine (SVM) classification methods. In this study, the data of 800 blood image samples were divided into two classes, acute and normal, with each class having 400 sample images. The calculation of the average accuracy and average time value on the system obtained the accuracy value of 88% and the required time of 3.73 seconds. The highest accuracy values for the testing data is 95% with duration time 0.89 seconds. The system could classify the leukemia images using Hu moment invariants and SVM.
基于Hu矩不变性和支持向量机的白血病细胞图像分类系统
白血病是一种攻击白细胞组织的癌症。当身体产生的异常血细胞超过正常限度时,就会发生这种情况;因此,导致它们不能正常工作。它对人类的免疫系统有巨大的影响。目前医务人员需要很长时间才能识别白血病,并将急性白血病细胞与正常细胞区分开来。本研究旨在利用Hu矩不变量特征提取技术和支持向量机(SVM)分类方法构建白细胞图像分类系统。本研究将800份血液图像样本数据分为急性和正常两类,每类400份样本图像。在系统上计算平均精度和平均时间值,得到精度值为88%,所需时间为3.73秒。测试数据的最高准确度值为95%,持续时间为0.89秒。该系统利用Hu矩不变量和支持向量机对白血病图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信