Application of SAE-DNN in Classification of Equipment Maintenance Value

Jianqiao Sun, Jiaxing Du, Xianzhu Zheng
{"title":"Application of SAE-DNN in Classification of Equipment Maintenance Value","authors":"Jianqiao Sun, Jiaxing Du, Xianzhu Zheng","doi":"10.1109/ICRIS.2018.00138","DOIUrl":null,"url":null,"abstract":"In the equipment support command process, the judgment of the maintenance value of damaged equipment is an important prerequisite for the allocation of power in wartime. Aiming at this problem, the neural network model is researched from the perspective of the classification of maintenance value of wartime equipment, and the training is carried out by Sparse Auto Encoder to improve the training speed. Finally got the classification accuracy of 0.95. The results prove that this model can provide support for wartime equipment support command decision.","PeriodicalId":194515,"journal":{"name":"2018 International Conference on Robots & Intelligent System (ICRIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Robots & Intelligent System (ICRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIS.2018.00138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the equipment support command process, the judgment of the maintenance value of damaged equipment is an important prerequisite for the allocation of power in wartime. Aiming at this problem, the neural network model is researched from the perspective of the classification of maintenance value of wartime equipment, and the training is carried out by Sparse Auto Encoder to improve the training speed. Finally got the classification accuracy of 0.95. The results prove that this model can provide support for wartime equipment support command decision.
SAE-DNN在设备维修价值分类中的应用
在装备保障指挥过程中,对受损装备维修价值的判断是战时权力分配的重要前提。针对这一问题,从战时装备维修价值分类的角度研究了神经网络模型,并采用稀疏自编码器进行训练,提高了训练速度。最终得到的分类准确率为0.95。结果表明,该模型可为战时装备保障指挥决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信