Q-Learning using Retrospective Kalman Filters

Kei Takahata, T. Miura
{"title":"Q-Learning using Retrospective Kalman Filters","authors":"Kei Takahata, T. Miura","doi":"10.1109/IIAI-AAI50415.2020.00063","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning allows us to acquire knowledge without any training data. However, for learning it takes time. We discuss a case in which an agent receives a large negative reward. We assume that the reverse action allows us to improve the current situation. In this work, we propose a method to perform Reverse action by using Retrospective Kalman Filter that estimates the state one step before. We show an experience by a Hunter Prey problem. And discuss the usefulness of our proposed method.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement Learning allows us to acquire knowledge without any training data. However, for learning it takes time. We discuss a case in which an agent receives a large negative reward. We assume that the reverse action allows us to improve the current situation. In this work, we propose a method to perform Reverse action by using Retrospective Kalman Filter that estimates the state one step before. We show an experience by a Hunter Prey problem. And discuss the usefulness of our proposed method.
基于回溯卡尔曼滤波器的q -学习
强化学习可以让我们在没有任何训练数据的情况下获得知识。然而,学习需要时间。我们讨论一个代理人得到很大的负报酬的情况。我们假设相反的行动能让我们改善现状。在这项工作中,我们提出了一种通过使用回溯卡尔曼滤波器来执行反向动作的方法,该方法在前一步估计状态。我们展示了一个猎人猎物问题的经验。并讨论了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信