Deep learning approach to high dimensional problems of quantum mechanics

V. Roudnev, M. Stepanova
{"title":"Deep learning approach to high dimensional problems of quantum mechanics","authors":"V. Roudnev, M. Stepanova","doi":"10.22323/1.429.0013","DOIUrl":null,"url":null,"abstract":"Traditional linear approximation of quantum mechanical wave functions are not practically appli-cable for systems with more than 3 degrees of freedom due to the “the curse of dimensionality”. Indeed,the number of parameters required to describe a wave function in high-dimensional space grows exponentially with the number of degrees of freedom. Inevitably, strong model assumptions should be used when studying such systems numerically. There are, however, estimates of the complexity of a function reproduced by a deep neural network (DNN) that demonstrate the same exponential growth with respect to the number of the network layers. The number of parameters for DNN grows only linearly with the number of layers. This gives us a hope that application of DNN as an approximant for a wave function in high-dimensional space might moderate the computational requirements for reproducing such systems and make 4- or higher-dimensional systems feasible for direct numerical modeling. We present a study of DNN approximation properties for a multi-dimensional quantum harmonic oscillator. We demonstrate that the computational resources required to reproduce the wave function depend on the dimensionality of the problem and the quantum numbers of the state. Increasing the number of hidden layers in a fully-connected feed-forward DNN we can reproduce some excited states of a multidimensional system with computational resources comparable to low-dimensional cases. Using the DNN as an approximant for a wave function paves a way to developing a new class of computational schemes for solving the Schroedinger equation for high-dimensional systems.","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional linear approximation of quantum mechanical wave functions are not practically appli-cable for systems with more than 3 degrees of freedom due to the “the curse of dimensionality”. Indeed,the number of parameters required to describe a wave function in high-dimensional space grows exponentially with the number of degrees of freedom. Inevitably, strong model assumptions should be used when studying such systems numerically. There are, however, estimates of the complexity of a function reproduced by a deep neural network (DNN) that demonstrate the same exponential growth with respect to the number of the network layers. The number of parameters for DNN grows only linearly with the number of layers. This gives us a hope that application of DNN as an approximant for a wave function in high-dimensional space might moderate the computational requirements for reproducing such systems and make 4- or higher-dimensional systems feasible for direct numerical modeling. We present a study of DNN approximation properties for a multi-dimensional quantum harmonic oscillator. We demonstrate that the computational resources required to reproduce the wave function depend on the dimensionality of the problem and the quantum numbers of the state. Increasing the number of hidden layers in a fully-connected feed-forward DNN we can reproduce some excited states of a multidimensional system with computational resources comparable to low-dimensional cases. Using the DNN as an approximant for a wave function paves a way to developing a new class of computational schemes for solving the Schroedinger equation for high-dimensional systems.
量子力学高维问题的深度学习方法
由于“维数诅咒”的存在,传统的量子力学波函数线性逼近在3个以上自由度的系统中已不适用。事实上,描述高维空间中的波函数所需的参数数量随着自由度的数量呈指数增长。在研究这类系统时,不可避免地要使用强模型假设。然而,对于由深度神经网络(DNN)再现的函数的复杂性的估计显示出与网络层数相同的指数增长。DNN的参数数量只随层数线性增长。这给了我们一个希望,应用深度神经网络作为高维空间中波函数的近似值,可能会缓和再现此类系统的计算需求,并使4维或更高维系统能够进行直接数值模拟。本文研究了多维量子谐振子的DNN近似性质。我们证明了再现波函数所需的计算资源取决于问题的维数和状态的量子数。在全连接前馈深度神经网络中增加隐藏层的数量,我们可以用与低维情况相当的计算资源再现多维系统的一些激发态。使用深度神经网络作为波函数的近似值,为开发一类新的计算方案来解决高维系统的薛定谔方程铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信