Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach

W. Duivesteijn, A. Knobbe, Ad Feelders, Matthijs van Leeuwen
{"title":"Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach","authors":"W. Duivesteijn, A. Knobbe, Ad Feelders, Matthijs van Leeuwen","doi":"10.1109/ICDM.2010.53","DOIUrl":null,"url":null,"abstract":"Whenever a dataset has multiple discrete target variables, we want our algorithms to consider not only the variables themselves, but also the interdependencies between them. We propose to use these interdependencies to quantify the quality of subgroups, by integrating Bayesian networks with the Exceptional Model Mining framework. Within this framework, candidate subgroups are generated. For each candidate, we fit a Bayesian network on the target variables. Then we compare the network’s structure to the structure of the Bayesian network fitted on the whole dataset. To perform this comparison, we define an edit distance-based distance metric that is appropriate for Bayesian networks. We show interesting subgroups that we experimentally found with our method on datasets from music theory, semantic scene classification, biology and zoogeography.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Whenever a dataset has multiple discrete target variables, we want our algorithms to consider not only the variables themselves, but also the interdependencies between them. We propose to use these interdependencies to quantify the quality of subgroups, by integrating Bayesian networks with the Exceptional Model Mining framework. Within this framework, candidate subgroups are generated. For each candidate, we fit a Bayesian network on the target variables. Then we compare the network’s structure to the structure of the Bayesian network fitted on the whole dataset. To perform this comparison, we define an edit distance-based distance metric that is appropriate for Bayesian networks. We show interesting subgroups that we experimentally found with our method on datasets from music theory, semantic scene classification, biology and zoogeography.
子群发现满足贝叶斯网络——一种特殊的模型挖掘方法
每当一个数据集有多个离散的目标变量时,我们希望我们的算法不仅考虑变量本身,而且考虑它们之间的相互依赖性。我们建议通过将贝叶斯网络与例外模型挖掘框架集成,使用这些相互依赖性来量化子组的质量。在此框架内,将生成候选子组。对于每个候选变量,我们在目标变量上拟合一个贝叶斯网络。然后我们将网络的结构与整个数据集上拟合的贝叶斯网络的结构进行比较。为了进行这种比较,我们定义了一个适合于贝叶斯网络的基于编辑距离的距离度量。我们在音乐理论、语义场景分类、生物学和动物地理学的数据集上通过实验发现了有趣的子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信