Chaotic Whale Optimization Algorithm in Hyperparameter Selection in Convolutional Neural Network Algorithm

Akhmad Ridho, A. Alamsyah
{"title":"Chaotic Whale Optimization Algorithm in Hyperparameter Selection in Convolutional Neural Network Algorithm","authors":"Akhmad Ridho, A. Alamsyah","doi":"10.15294/jaist.v4i2.60595","DOIUrl":null,"url":null,"abstract":"In several previous studies, metaheuristic methods were used to search for CNN hyperparameters. However, this research only focuses on searching for CNN hyperparameters in the type of network architecture, network structure, and initializing network weights. Therefore, in this article, we only focus on searching for CNN hyperparameters with network architecture type, and network structure with additional regularization. In this article, the CNN hyperparameter search with regularization uses CWOA on the MNIST and FashionMNIST datasets. Each dataset consists of 60,000 training data and 10,000 testing data. Then during the research, the training data was only taken 50% of the total data, then the data was divided again by 10% for data validation and the rest for training data. The results of the research on the MNIST CWOA dataset have an error value of 0.023 and an accuracy of 99.63. Then the FashionMNIST CWOA dataset has an error value of 0.23 and an accuracy of 91.36.","PeriodicalId":418742,"journal":{"name":"Journal of Advances in Information Systems and Technology","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Systems and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jaist.v4i2.60595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In several previous studies, metaheuristic methods were used to search for CNN hyperparameters. However, this research only focuses on searching for CNN hyperparameters in the type of network architecture, network structure, and initializing network weights. Therefore, in this article, we only focus on searching for CNN hyperparameters with network architecture type, and network structure with additional regularization. In this article, the CNN hyperparameter search with regularization uses CWOA on the MNIST and FashionMNIST datasets. Each dataset consists of 60,000 training data and 10,000 testing data. Then during the research, the training data was only taken 50% of the total data, then the data was divided again by 10% for data validation and the rest for training data. The results of the research on the MNIST CWOA dataset have an error value of 0.023 and an accuracy of 99.63. Then the FashionMNIST CWOA dataset has an error value of 0.23 and an accuracy of 91.36.
卷积神经网络超参数选择中的混沌鲸优化算法
在之前的一些研究中,使用元启发式方法搜索CNN超参数。然而,本研究只关注网络架构类型、网络结构、初始化网络权值等方面的CNN超参数搜索。因此,在本文中,我们只关注搜索带有网络架构类型的CNN超参数,以及带有附加正则化的网络结构。在本文中,带正则化的CNN超参数搜索在MNIST和FashionMNIST数据集上使用CWOA。每个数据集由6万个训练数据和1万个测试数据组成。然后在研究过程中,只取总数据的50%作为训练数据,再除以10%进行数据验证,剩下的作为训练数据。在MNIST CWOA数据集上的研究结果误差值为0.023,准确率为99.63。那么FashionMNIST CWOA数据集的误差值为0.23,准确率为91.36。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信