Research of CUDA in intelligent visual surveillance algorithms

C. Rao, Shuoqi Liu
{"title":"Research of CUDA in intelligent visual surveillance algorithms","authors":"C. Rao, Shuoqi Liu","doi":"10.1109/IVSURV.2011.6157028","DOIUrl":null,"url":null,"abstract":"When used in practical applications, the speed of intelligent visual surveillance algorithms may decline dramatically due to massive data. Thus the computing speed of algorithms can be a crucial factor in the practical applications. In addition to excellent parallel computing capability, a modern GPU also has large bandwidth and powerful floating-point computing capability. These features make GPU an appropriate device for doing general-purpose computing. This paper accelerates Gaussian Mixture Model and HLSIFT (Harris-like Scale Invariant Feature Detector) using CUDA. The former algorithm gets more than 45 times accelerating and the latter one gets more than 35 times accelerating. The acceleration result is impressive.","PeriodicalId":141829,"journal":{"name":"2011 Third Chinese Conference on Intelligent Visual Surveillance","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third Chinese Conference on Intelligent Visual Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSURV.2011.6157028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When used in practical applications, the speed of intelligent visual surveillance algorithms may decline dramatically due to massive data. Thus the computing speed of algorithms can be a crucial factor in the practical applications. In addition to excellent parallel computing capability, a modern GPU also has large bandwidth and powerful floating-point computing capability. These features make GPU an appropriate device for doing general-purpose computing. This paper accelerates Gaussian Mixture Model and HLSIFT (Harris-like Scale Invariant Feature Detector) using CUDA. The former algorithm gets more than 45 times accelerating and the latter one gets more than 35 times accelerating. The acceleration result is impressive.
CUDA在智能视觉监控算法中的研究
在实际应用中,由于数据量巨大,智能视觉监控算法的速度可能会急剧下降。因此,算法的计算速度在实际应用中是一个至关重要的因素。现代GPU除了具有出色的并行计算能力外,还具有大带宽和强大的浮点计算能力。这些特性使GPU成为进行通用计算的合适设备。本文利用CUDA加速高斯混合模型和类哈里斯尺度不变特征检测器。前一种算法加速45倍以上,后一种算法加速35倍以上。加速效果令人印象深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信