{"title":"Enhanced weakly trained frontal face detector for surveillance purposes","authors":"W. Louis, K. Plataniotis, Yong Man Ro","doi":"10.1109/FUZZY.2010.5584450","DOIUrl":null,"url":null,"abstract":"Face detection is becoming popular in surveillance applications; however, the need of enormous size face/non-face dataset, large number of features, and long training time are persistent problems. This paper claims that only a subset of the total number of features conserves the major power to detect faces; hence, this subset is capable to detect faces with high detection rate. The proposed detector fuses the results of two classifiers where one is trained with only 40 Haar-like features and the other is trained with only 50 LBP Histogram features. A pre-processing stage of skin-tone detection is applied to reduce the false positive rate. The detector is examined on real-life low-resolution surveillance sequence. Conducted experiments show that the proposed detector can achieve a high detection rate and a low false positive rate. Also, it outperforms Lienhart detector and tolerates wide range of illumination and blurring changes.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Face detection is becoming popular in surveillance applications; however, the need of enormous size face/non-face dataset, large number of features, and long training time are persistent problems. This paper claims that only a subset of the total number of features conserves the major power to detect faces; hence, this subset is capable to detect faces with high detection rate. The proposed detector fuses the results of two classifiers where one is trained with only 40 Haar-like features and the other is trained with only 50 LBP Histogram features. A pre-processing stage of skin-tone detection is applied to reduce the false positive rate. The detector is examined on real-life low-resolution surveillance sequence. Conducted experiments show that the proposed detector can achieve a high detection rate and a low false positive rate. Also, it outperforms Lienhart detector and tolerates wide range of illumination and blurring changes.