Simulation-Extrapolation Gaussian Processes for Input Noise Modeling

B. Bócsi, Hunor Jakab, L. Csató
{"title":"Simulation-Extrapolation Gaussian Processes for Input Noise Modeling","authors":"B. Bócsi, Hunor Jakab, L. Csató","doi":"10.1109/SYNASC.2014.33","DOIUrl":null,"url":null,"abstract":"Input noise is common in situations when data either is coming from unreliable sensors or previous outputs are used as current inputs. Nevertheless, most regression algorithms do not model input noise, inducing thus bias in the regression. We present a method that corrects this bias by repeated regression estimations. In simulation extrapolation we perturb the inputs with additional input noise and by observing the effect of this addition on the result, we estimate what would the prediction be without the input noise. We extend the examination to a non-parametric probabilistic regression, inference using Gaussian processes. We conducted experiments on both synthetic data and in robotics, i.e., Learning the transition dynamics of a dynamical system, showing significant improvements in the accuracy of the prediction.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Input noise is common in situations when data either is coming from unreliable sensors or previous outputs are used as current inputs. Nevertheless, most regression algorithms do not model input noise, inducing thus bias in the regression. We present a method that corrects this bias by repeated regression estimations. In simulation extrapolation we perturb the inputs with additional input noise and by observing the effect of this addition on the result, we estimate what would the prediction be without the input noise. We extend the examination to a non-parametric probabilistic regression, inference using Gaussian processes. We conducted experiments on both synthetic data and in robotics, i.e., Learning the transition dynamics of a dynamical system, showing significant improvements in the accuracy of the prediction.
输入噪声建模的模拟-外推高斯过程
当数据来自不可靠的传感器或以前的输出被用作当前输入时,输入噪声很常见。然而,大多数回归算法没有对输入噪声建模,从而在回归中引起偏差。我们提出了一种通过重复回归估计来纠正这种偏差的方法。在模拟外推中,我们用额外的输入噪声扰动输入,通过观察这种添加对结果的影响,我们估计没有输入噪声的预测会是什么。我们将检验扩展到非参数概率回归,使用高斯过程进行推理。我们对合成数据和机器人进行了实验,即学习动力系统的过渡动力学,显示出预测准确性的显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信