Chemically responsive protein-photoresist hybrid actuator

D. Serien, S. Takeuchi
{"title":"Chemically responsive protein-photoresist hybrid actuator","authors":"D. Serien, S. Takeuchi","doi":"10.1109/MEMSYS.2015.7050993","DOIUrl":null,"url":null,"abstract":"We report the multiphoton fabrication of hybrid microstructures of photoresist and chemically responsive protein hydrogel for microactuation, such as a lever and a rotary stepper. By two-step direct laser writing (DLW) technology, we combine chemically responsive protein hydrogel with mechanical robust photoresist into pH-responsive hybrid actuators that contain only biocompatible materials. The fabrication can be performed separately, without adding to the complexity of device fabrication. We observe micrometer-range motion of the photoresist components. These microactuators may also serve as a pH- or salt-concentration-sensor that measure and interact with their environment by their motion as immediate feedback.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We report the multiphoton fabrication of hybrid microstructures of photoresist and chemically responsive protein hydrogel for microactuation, such as a lever and a rotary stepper. By two-step direct laser writing (DLW) technology, we combine chemically responsive protein hydrogel with mechanical robust photoresist into pH-responsive hybrid actuators that contain only biocompatible materials. The fabrication can be performed separately, without adding to the complexity of device fabrication. We observe micrometer-range motion of the photoresist components. These microactuators may also serve as a pH- or salt-concentration-sensor that measure and interact with their environment by their motion as immediate feedback.
化学反应蛋白-光刻胶混合驱动器
我们报道了用于微驱动的光刻胶和化学反应蛋白水凝胶混合微结构的多光子制造,如杠杆和旋转步进器。通过两步直接激光写入(DLW)技术,我们将化学反应性蛋白质水凝胶与机械坚固的光刻胶结合成ph响应型混合驱动器,该驱动器仅包含生物相容性材料。制造可以单独进行,而不会增加器件制造的复杂性。我们观察到光刻胶元件在微米范围内的运动。这些微致动器也可以作为pH值或盐浓度传感器,通过它们的运动作为即时反馈来测量和与环境相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信