Joint Sparse Channel Estimation in Downlink NOMA System

Haohui Jia, Na Chen, T. Higashino, M. Okada
{"title":"Joint Sparse Channel Estimation in Downlink NOMA System","authors":"Haohui Jia, Na Chen, T. Higashino, M. Okada","doi":"10.1109/APSIPAASC47483.2019.9023326","DOIUrl":null,"url":null,"abstract":"Non-orthogonal multiple access (NOMA) is regarded as one of the most important techniques for future 5G systems. In the downlink general NOMA schemes, the received NOMA signal will be analyzed via two parallel channel state information (CSI) after sparse multiple path channel fading. In this paper, by exploiting the inherent sparsity of the channel, we proposed a low-complexity joint channel estimation in a single-input and multiple-output antennas system, based on the compressed sensing to detect each layer channel state information. As a comparison, the performance of compressed sensing is better than the conventional method Least-Square (LS) and Minimum Mean Square Error (MMSE).","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Non-orthogonal multiple access (NOMA) is regarded as one of the most important techniques for future 5G systems. In the downlink general NOMA schemes, the received NOMA signal will be analyzed via two parallel channel state information (CSI) after sparse multiple path channel fading. In this paper, by exploiting the inherent sparsity of the channel, we proposed a low-complexity joint channel estimation in a single-input and multiple-output antennas system, based on the compressed sensing to detect each layer channel state information. As a comparison, the performance of compressed sensing is better than the conventional method Least-Square (LS) and Minimum Mean Square Error (MMSE).
下行NOMA系统中的联合稀疏信道估计
非正交多址(NOMA)被认为是未来5G系统最重要的技术之一。在下行通用NOMA方案中,接收到的NOMA信号经过稀疏多径信道衰落后,通过两个并行信道状态信息(CSI)进行分析。本文利用信道固有的稀疏性,在单输入多输出天线系统中,提出了一种基于压缩感知检测各层信道状态信息的低复杂度联合信道估计方法。通过比较,压缩感知的性能优于传统的最小二乘(LS)和最小均方误差(MMSE)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信