Use of Deep Neural Networks to Predict Lithium-Ion Cell Voltages During Charging and Discharging

See Fung Lee, Jeevan Kanesalingam, Hock Guan Ho, S. Jayaprakasam
{"title":"Use of Deep Neural Networks to Predict Lithium-Ion Cell Voltages During Charging and Discharging","authors":"See Fung Lee, Jeevan Kanesalingam, Hock Guan Ho, S. Jayaprakasam","doi":"10.1109/TENSYMP55890.2023.10223633","DOIUrl":null,"url":null,"abstract":"This paper uses machine learning to predict either the voltage, current, or state of charge (SOC) during a discharging of a Li-Ion cell. Due to the non-linear characteristics of a Li-Ion cells, machine learning is used to create a model for prediction. Predicting the Li-Ion cell characteristics is useful for products in determining the end of discharge (EOD) levels under different loading conditions. The model used is a Deep Neural Network (DNN) with 2 hidden layers with 128 nodes each and is implemented using Python. To train the model, approximately 6000 data points of charging and discharging data of a LCO prismatic CS2 1100mAh Li-Ion cell is used. It was found that the accuracy of the model is approximately 5% and worsens at lower SOC.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses machine learning to predict either the voltage, current, or state of charge (SOC) during a discharging of a Li-Ion cell. Due to the non-linear characteristics of a Li-Ion cells, machine learning is used to create a model for prediction. Predicting the Li-Ion cell characteristics is useful for products in determining the end of discharge (EOD) levels under different loading conditions. The model used is a Deep Neural Network (DNN) with 2 hidden layers with 128 nodes each and is implemented using Python. To train the model, approximately 6000 data points of charging and discharging data of a LCO prismatic CS2 1100mAh Li-Ion cell is used. It was found that the accuracy of the model is approximately 5% and worsens at lower SOC.
利用深度神经网络预测锂离子电池充放电电压
本文使用机器学习来预测锂离子电池放电过程中的电压、电流或充电状态(SOC)。由于锂离子电池的非线性特性,机器学习被用于创建预测模型。预测锂离子电池的特性有助于产品在不同负载条件下确定放电终点(EOD)水平。使用的模型是一个深度神经网络(DNN),具有2个隐藏层,每个隐藏层有128个节点,并使用Python实现。为了训练模型,使用了大约6000个数据点的LCO棱镜CS2 1100mAh锂离子电池的充放电数据。结果表明,该模型的准确率约为5%,在较低的SOC下,该模型的准确率下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信