A Focused Regions Identification Method for Nonlinear Least Squares Curve Fitting Problems

Guanglu Zhang, D. Allaire, J. Cagan
{"title":"A Focused Regions Identification Method for Nonlinear Least Squares Curve Fitting Problems","authors":"Guanglu Zhang, D. Allaire, J. Cagan","doi":"10.1115/detc2022-88146","DOIUrl":null,"url":null,"abstract":"\n Important for many science and engineering fields, meaningful nonlinear models result from fitting such models to data by estimating the value of each parameter in the model. Since parameters in nonlinear models often characterize a substance or a system (e.g., mass diffusivity), it is critical to find the optimal parameter estimators that minimize or maximize a chosen objective function. In practice, iterative local methods (e.g., Levenberg-Marquardt method) and heuristic methods (e.g., genetic algorithms) are commonly employed for least squares parameter estimation in nonlinear models. However, practitioners are not able to know whether the parameter estimators derived through these methods are the optimal parameter estimators that correspond to the global minimum of the squared error of the fit. In this paper, a focused regions identification method is introduced for least squares parameter estimation in nonlinear models. Using expected fitting accuracy and derivatives of the squared error of the fit, this method rules out the regions in parameter space where the optimal parameter estimators cannot exist. Practitioners are guaranteed to find the optimal parameter estimators through an exhaustive search in the remaining regions (i.e., focused regions). The focused regions identification method is validated through a case study in which the Michaelis-Menten model is fitted to an experimental data set. The case study shows that the focused regions identification method can find the optimal parameter estimators and the corresponding global minimum effectively and efficiently.","PeriodicalId":382970,"journal":{"name":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-88146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Important for many science and engineering fields, meaningful nonlinear models result from fitting such models to data by estimating the value of each parameter in the model. Since parameters in nonlinear models often characterize a substance or a system (e.g., mass diffusivity), it is critical to find the optimal parameter estimators that minimize or maximize a chosen objective function. In practice, iterative local methods (e.g., Levenberg-Marquardt method) and heuristic methods (e.g., genetic algorithms) are commonly employed for least squares parameter estimation in nonlinear models. However, practitioners are not able to know whether the parameter estimators derived through these methods are the optimal parameter estimators that correspond to the global minimum of the squared error of the fit. In this paper, a focused regions identification method is introduced for least squares parameter estimation in nonlinear models. Using expected fitting accuracy and derivatives of the squared error of the fit, this method rules out the regions in parameter space where the optimal parameter estimators cannot exist. Practitioners are guaranteed to find the optimal parameter estimators through an exhaustive search in the remaining regions (i.e., focused regions). The focused regions identification method is validated through a case study in which the Michaelis-Menten model is fitted to an experimental data set. The case study shows that the focused regions identification method can find the optimal parameter estimators and the corresponding global minimum effectively and efficiently.
非线性最小二乘曲线拟合问题的焦点区域识别方法
对于许多科学和工程领域来说,有意义的非线性模型是通过估计模型中每个参数的值来拟合数据的。由于非线性模型中的参数通常表征物质或系统(例如,质量扩散率),因此找到使所选目标函数最小化或最大化的最佳参数估计器是至关重要的。在实践中,迭代局部方法(如Levenberg-Marquardt方法)和启发式方法(如遗传算法)通常用于非线性模型的最小二乘参数估计。然而,从业者无法知道通过这些方法导出的参数估计量是否是与拟合平方误差的全局最小值相对应的最优参数估计量。本文提出了一种用于非线性模型最小二乘参数估计的聚焦区域识别方法。该方法利用期望拟合精度和拟合平方误差的导数,排除了参数空间中不存在最优参数估计量的区域。从业者保证通过在剩余区域(即焦点区域)的穷举搜索找到最优参数估计器。通过Michaelis-Menten模型与实验数据集的拟合,验证了该方法的有效性。实例研究表明,该方法能够有效地找到最优参数估计量和相应的全局最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信